Abstract
Sensory systems allow for the transfer of environmental stimuli into internal cues that can alter physiology and behaviour. Many studies of visual systems focus on opsins to compare spectral sensitivity among individuals, populations, and species living in different lighting environments. This requires an understanding of the cone opsins, which can be numerous. The bluefin killifish is a good model for studying the interaction between environments and visual systems as they are found in both clear springs and tannin-stained swamps. We conducted a genome-wide screening and demonstrated that the bluefin killifish has nine cone opsins: one SWS1 (354 nm), two SWS2 (SWS2B: 359 nm, SWS2A: 448 nm), two RH2 (RH2-2: 476 nm, RH2-1: 537 nm), and four LWS (LWS-1: 569 nm, LWS-2: 524 nm, LWS-3: 569 nm, LWS-R: 560 or 569 nm). These nine cone opsins were located on four scaffolds. One scaffold contained the two SWS2 and three of the four LWS opsins in the same syntenic order as found in other cyprinodontoid fishes. We also compared opsin expression in larval and adult killifish under clear water conditions, which mimic springs. Two of the newly discovered opsins (LWS-2 and LWS-3) were expressed at low levels (< 0.2 %). Whether these opsins make meaningful contributions to visual perception in other contexts (i.e., swamp conditions) is unclear. In contrast, there was an ontogenetic change from using LWS-R to LWS-1 opsin. Bluefin killifish adults may be slightly more sensitive to longer wavelengths, which might be related to sexual selection and/or foraging preferences.