lagrange identity
Recently Published Documents


TOTAL DOCUMENTS

28
(FIVE YEARS 0)

H-INDEX

8
(FIVE YEARS 0)

2020 ◽  
Vol 2020 (1) ◽  
Author(s):  
Marin Marin ◽  
Sorin Vlase ◽  
Ioan Tuns

AbstractIn our paper we address the thermoelasticity theory of the strain gradient. First, we define the mixed problem with initial and boundary data in this context. Then, with the help of an identity of Lagrange type, we prove some uniqueness theorems with regards to the solution of this problem and two theorems with regards to the continuous dependence of solutions on loads and on initial data. We want to highlight that the use of the approach proposed in this work enables obtaining results without recourse to any boundedness assumptions on the coefficients or to any laws of conservation of energy. Also, we do not impose restrictions on thermoelastic coefficients regarding their positive definition.



Mathematics ◽  
2020 ◽  
Vol 8 (3) ◽  
pp. 371 ◽  
Author(s):  
Manuela Carini ◽  
Vittorio Zampoli

Through the present work, we want to lay the foundation of the well-posedness question for a linear model of thermoelasticity here proposed, in which the presence of voids into the elastic matrix is taken into account following the Cowin–Nunziato theory, and whose thermal response obeys a three-phase lag time-differential heat transfer law. By virtue of the linearity of the model investigated, the basic initial-boundary value problem is conveniently modified into an auxiliary one; attention is paid to the uniqueness question, which is addressed through two alternative paths, i.e., the Lagrange identity and the logarithmic convexity methods, as well as to the continuous dependence issue. The results are achieved under very weak assumptions involving constitutive coefficients and delay times, at most coincident with those able to guarantee the thermodynamic consistency of the model.



2020 ◽  
Vol 34 ◽  
pp. 01004
Author(s):  
Marin Marin

In our paper we first define the mixed initial-boundary values problem in the theory of strain gradient thermoelasticity. With the help of an identity of Lagrange’s type, we then prove some theorems regarding the uniqueness of the solution of this mixed problem and also two results regarding the continuous dependence of solutions on initial data and on the charges. We must ouline that we obtain these qualitative results without recourse to any laws of conservation of energy and without recourse to any boundedness assumptions on the coefficients. It is equally important to note that we do not impose restrictions on the elastic coefficients regarding their positive definition.



Symmetry ◽  
2019 ◽  
Vol 11 (8) ◽  
pp. 1008 ◽  
Author(s):  
V. Rosenhaus ◽  
Ravi Shankar

We study differential systems for which it is possible to establish a correspondence between symmetries and conservation laws based on Noether identity: quasi-Noether systems. We analyze Noether identity and show that it leads to the same conservation laws as Lagrange (Green–Lagrange) identity. We discuss quasi-Noether systems, and some of their properties, and generate classes of quasi-Noether differential equations of the second order. We next introduce a more general version of quasi-Lagrangians which allows us to extend Noether theorem. Here, variational symmetries are only sub-symmetries, not true symmetries. We finally introduce the critical point condition for evolution equations with a conserved integral, demonstrate examples of its compatibility, and compare the invariant submanifolds of quasi-Lagrangian systems with those of Hamiltonian systems.







Sign in / Sign up

Export Citation Format

Share Document