asynchronous cellular automata
Recently Published Documents


TOTAL DOCUMENTS

110
(FIVE YEARS 14)

H-INDEX

14
(FIVE YEARS 0)

2021 ◽  
pp. 103952
Author(s):  
Luca Furnari ◽  
Alfonso Senatore ◽  
Alessio De Rango ◽  
Michele De Biase ◽  
Salvatore Straface ◽  
...  

Author(s):  
Souvik Roy ◽  
Sukanta Das

In the light of recent developments in the theory of reversibility for asynchronous cellular automata, we attempt to explore the dynamics of recurrent rules under fully asynchronous updating scheme. Depending on the reachability of the configurations for a communication class during the evolution of the system, we classify the recurrent rules into two classes — partially exposed recurrent system and fully exposed recurrent system.


This chapter discusses the use of asynchronous cellular automata with controlled movement of active cells for image processing and recognition. A time-pulsed image description method is described. Various models and structures of cellular automata for transmitting active signals are presented. The image of the figure is binarized and an active signal moves along its edges. At every moment in time, the active cell of an asynchronous cellular automaton generates a pulse signal. The shape of the generated pulse sequence describes the geometric shape of a flat figure. Methods for describing images of individual plane figures, as well as a method for describing images consisting of many separate geometric objects, are proposed. Cellular automaton is considered as an analogue of the retina of the human visual canal. The circuitry structures of cells of such asynchronous cellular automata are presented, and the software implementation of the proposed methods is also performed. Methods allow one to classify individual geometric image objects.


The chapter describes the functioning model of an asynchronous cellular automaton with a variable number of active cells. The rules for the formation of active cells with new active states are considered. Codes of active states for the von Neumann neighborhood are presented, and a technique for coding active states for other forms of neighborhoods is described. Several modes of operation of asynchronous cellular automata from the point of view of the influence of active cells are considered. The mode of coincidence of active cells and the mode of influence of neighboring active cells are considered, and the mode of influence of active cells of the surroundings is briefly considered. Algorithms of cell operation for all modes of the cellular automata are presented. Functional structures of cells and their CAD models are constructed.


The chapter presents the principles of functioning of asynchronous cellular automata with a group of cells united in a colony. The rules of the formation of colonies of active cells and methods to move them along the field of a cellular automaton are considered. Each formed colony of active cells has a main cell that controls the movement of the entire colony. If several colonies of identical cells meet and combine, then the main cell is selected according to the priority, which is evaluated by the state of the cells of their neighborhoods. Colonies with different active cells can interact, destroying each other. The methods of interaction of colonies with different active states are described. An example of colony formation for solving the problem of describing contour images is presented. The image is described by moving the colony through the cells belonging to the image contour and fixing the cell sectors of the colony, which include the cells of the contour at each time step.


The chapter describes well-known models and implementation options for pseudorandom number generators based on cellular automata. Pseudorandom number generators based on synchronous and asynchronous cellular automata are briefly reviewed. Pseudorandom number generators based on one-dimensional and two-dimensional cellular automata, as well as using hybrid cellular automata, are described. New structures of pseudorandom number generators based on asynchronous cellular automata with a variable number of active cells are proposed. Testing of the proposed generators was carried out, which showed the high quality of the generators. Testing was conducted using graphical and statistical tests.


Sign in / Sign up

Export Citation Format

Share Document