Processing and Recognition of Images Based on Asynchronous Cellular Automata

This chapter discusses the use of asynchronous cellular automata with controlled movement of active cells for image processing and recognition. A time-pulsed image description method is described. Various models and structures of cellular automata for transmitting active signals are presented. The image of the figure is binarized and an active signal moves along its edges. At every moment in time, the active cell of an asynchronous cellular automaton generates a pulse signal. The shape of the generated pulse sequence describes the geometric shape of a flat figure. Methods for describing images of individual plane figures, as well as a method for describing images consisting of many separate geometric objects, are proposed. Cellular automaton is considered as an analogue of the retina of the human visual canal. The circuitry structures of cells of such asynchronous cellular automata are presented, and the software implementation of the proposed methods is also performed. Methods allow one to classify individual geometric image objects.

The sixth chapter deals with the construction of pseudo-random number generators based on a combination of two cellular automata, which were considered in the previous chapters. The generator is constructed based on two cellular automata. The first cellular automaton controls the location of the active cell on the second cellular automaton, which realizes the local state function for each cell. The active cell on the second cellular automaton is the main cell and from its output bits of the bit sequence are formed at the output of the generator. As the first cellular automaton, an asynchronous cellular automaton is used in this chapter, and a synchronous cellular automaton is used as the second cellular automaton. In this case, the active cell of the second cellular automaton realizes another local function at each time step and is inhomogeneous. The algorithm for the work of a cell of a combined cellular automaton for implementing a generator and its hardware implementation are presented.


The chapter describes the functioning model of an asynchronous cellular automaton with a variable number of active cells. The rules for the formation of active cells with new active states are considered. Codes of active states for the von Neumann neighborhood are presented, and a technique for coding active states for other forms of neighborhoods is described. Several modes of operation of asynchronous cellular automata from the point of view of the influence of active cells are considered. The mode of coincidence of active cells and the mode of influence of neighboring active cells are considered, and the mode of influence of active cells of the surroundings is briefly considered. Algorithms of cell operation for all modes of the cellular automata are presented. Functional structures of cells and their CAD models are constructed.


2017 ◽  
Vol 885 ◽  
pp. 228-233
Author(s):  
Kornél Bortnyik ◽  
Péter Barkóczy

The eutectic structure of aluminum alloys has different morphology. To describe these a different image processing and analysis workflow needs to be built. To assign the different image processing steps to the different structure automatically a computational method had to be developed. In the image processing methods several cellular automata operate. For this expediently a cellular automaton was developed to classify the different eutectic structures. In materials engineering applications a HPP automata is used extensively therefore this type of automata were chosen to solve the mentioned problem. This article shows the simplicity of this method as well as the desired evaluation method.


The chapter presents the principles of functioning of asynchronous cellular automata with a group of cells united in a colony. The rules of the formation of colonies of active cells and methods to move them along the field of a cellular automaton are considered. Each formed colony of active cells has a main cell that controls the movement of the entire colony. If several colonies of identical cells meet and combine, then the main cell is selected according to the priority, which is evaluated by the state of the cells of their neighborhoods. Colonies with different active cells can interact, destroying each other. The methods of interaction of colonies with different active states are described. An example of colony formation for solving the problem of describing contour images is presented. The image is described by moving the colony through the cells belonging to the image contour and fixing the cell sectors of the colony, which include the cells of the contour at each time step.


The seventh chapter describes approaches to constructing pseudo-random number generators based on cellular automata with a hexagonal coating. Several variants of cellular automata with hexagonal coating are considered. Asynchronous cellular automata with hexagonal coating are used. To simulate such cellular automata with software, a hexagonal coating was formed using an orthogonal coating. At the same time, all odd lines shifted to the cell floor to the right or to the left. The neighborhood of each cell contains six neighboring cells that have one common side with one cell of neighborhood. The chapter considers the behavior of cellular automata for different sizes and different initial settings. The behavior of cellular automata with various local functions is described, as well as the behavior of the cellular automaton with an additional bit inverting the state of the cell in each time step of functioning.


The fourth chapter deals with the use of asynchronous cellular automata for constructing high-quality pseudo-random number generators. A model of such a generator is proposed. Asynchronous cellular automata are constructed using the neighborhood of von Neumann and Moore. Each cell of such an asynchronous cellular state can be in two states (information and active states). There is only one active cell at each time step in an asynchronous cellular automaton. The cell performs local functions only when it is active. At each time step, the active cell transmits its active state to one of the neighborhood cells. An algorithm for the operation of a pseudo-random number generator based on an asynchronous cellular automaton is described, as well as an algorithm for working a cell. The hardware implementation of such a generator is proposed. Several variants of cell construction are considered.


The chapter describes the models and paradigms of asynchronous cellular automata with several active cells. Variants of active states are considered in which an asynchronous cellular automaton functions without loss of active cells. Structures that allow the coincidence of several active states in one cell of a cellular automaton are presented. The cell scheme is complicated by adding several active triggers and state control schemes for active triggers. The VHDL models of such cells were developed. Attention is paid to the choice of local state functions and local transition functions. The local transition functions are different for each active state. This allows you to transmit active signals in different directions. At each time step, two cells can change their information state according to the local state function. Asynchronous cellular automata have a long lifecycle.


2007 ◽  
Vol 13 (4) ◽  
pp. 397-413 ◽  
Author(s):  
Jia Lee ◽  
Susumu Adachi ◽  
Ferdinand Peper

We propose a self-replicating machine that is embedded in a two-dimensional asynchronous cellular automaton with von Neumann neighborhood. The machine dynamically encodes its shape into description signals, and despite the randomness of cell updating, it is able to successfully construct copies of itself according to the description signals. Self-replication on asynchronously updated cellular automata may find application in nanocomputers, where reconfigurability is an essential property, since it allows avoidance of defective parts and simplifies programming of such computers.


2020 ◽  
Vol 29 (4) ◽  
pp. 741-757
Author(s):  
Kateryna Hazdiuk ◽  
◽  
Volodymyr Zhikharevich ◽  
Serhiy Ostapov ◽  
◽  
...  

This paper deals with the issue of model construction of the self-regeneration and self-replication processes using movable cellular automata (MCAs). The rules of cellular automaton (CA) interactions are found according to the concept of equilibrium neighborhood. The method is implemented by establishing these rules between different types of cellular automata (CAs). Several models for two- and three-dimensional cases are described, which depict both stable and unstable structures. As a result, computer models imitating such natural phenomena as self-replication and self-regeneration are obtained and graphically presented.


Author(s):  
Sulharmi Irawan ◽  
Yasir Hasan ◽  
Kennedi Tampubolon

Glass reflection image displays unclear or suboptimal visuals, such as overlapping images that blend with overlapping displays, so objects in images that have information and should be able to be processed for advanced research in the field of image processing or computer graphics do not give the impression so that research can be done. Improvement of overlapping images can be separated by displaying one of the image objects, the method that can be used is the Contras Limited Adaptive Histogram Equalization (CLAHE) method. CLAHE can improve the color and appearance of objects that are not clear on the image. Images that experience cases such as glass reflection images can be increased in contrast values to separate or accentuate one of the objects contained in the image using the Contrast Limited Adaptive Histogram Equalization (CLAHE) method.Keywords: Digital Image, Glass Reflection, Contrast, CLAHE, YIQ.


Sign in / Sign up

Export Citation Format

Share Document