amplification fragment length polymorphism
Recently Published Documents


TOTAL DOCUMENTS

9
(FIVE YEARS 0)

H-INDEX

5
(FIVE YEARS 0)

2017 ◽  
Vol 66 (1) ◽  
pp. 107-111
Author(s):  
Lisa Lombardi ◽  
Marina Zoppo ◽  
Cosmeri Rizzato ◽  
Colin Gerard Egan ◽  
Roberto Scarpato ◽  
...  

Changes in ultraviolet light radiation can act as a selective force on the genetic and physiological traits of a microbial community. Two strains of the common soil bacterium Pseudomonas stutzeri, isolated from aquifer cores and from human spinal fluid were exposed to ultraviolet light. Amplification length polymorphism analysis (AFLP) was used to genotype this bacterial species and evaluate the effect of UVA-exposure on genomic DNA extracted from 18 survival colonies of the two strains compared to unexposed controls. AFLP showed a high discriminatory power, confirming the existence of different genotypes within the species and presence of DNA polymorphisms in UVA-exposed colonies.


2003 ◽  
Vol 4 (1) ◽  
pp. 26-30
Author(s):  
Béatrice de Montera

The point of the present study is to illustrate and, if possible, promote the existing link between genomics and ethics, taking the example of cloned and transgenic animals. These ‘new animals’ raise theoretical and practical problems that concern applied ethics. We will explore more particularly an original strategy showing that it is possible, starting from philosophical questioning about the nature of identity, to use a genomic approach, based on amplification fragment length polymorphism (AFLP) and methylation-sensitive amplification polymorphism (MSAP) detection, to provide useful tools to define more rigorously what cloned animals are, by testing their genetic and epigenetic identity. We expect from the future results of this combined approach to stimulate the creativity of the philosophical and ethical reflection about the impact of biotechnology on animals, and to increase scientific involvement in such issues.


2002 ◽  
Vol 15 (11) ◽  
pp. 1108-1118 ◽  
Author(s):  
Jean-Michel Ané ◽  
Julien Lévy ◽  
Philippe Thoquet ◽  
Olga Kulikova ◽  
Françoise de Billy ◽  
...  

The DMI1, DMI2, and DMI3 genes of Medicago truncatula, which are required for both nodulation and mycorrhization, control early steps of Nod factor signal transduction. Here, we have used diverse approaches to pave the way for the map-based cloning of these genes. Molecular amplification fragment length polymorphism markers linked to the three genes were identified by bulked segregant analysis. Integration of these markers into the general genetic map of M. truncatula revealed that DMI1, DMI2, and DMI3 are located on linkage groups 2, 5, and 8, respectively. Cytogenetic studies using fluorescent in situ hybridization (FISH) on mitotic and pachytene chromosomes confirmed the location of DMI1, DMI2, and DMI3 on chromosomes 2, 5, and 8. FISH-pachytene studies revealed that the three genes are in euchromatic regions of the genome, with a ratio of genetic to cytogenetic distances between 0.8 and 1.6 cM per μm in the DMI1, DMI2, and DMI3 regions. Through grafting experiments, we showed that the genetic control of the dmi1, dmi2, and dmi3 nodulation phenotypes is determined at the root level. This means that mutants can be transformed by Agrobacterium rhizogenes to accelerate the complementation step of map-based cloning projects for DMI1, DMI2, and DMI3.


Sign in / Sign up

Export Citation Format

Share Document