isopentenyl diphosphate isomerase
Recently Published Documents


TOTAL DOCUMENTS

87
(FIVE YEARS 3)

H-INDEX

23
(FIVE YEARS 0)

2021 ◽  
Vol 20 (1) ◽  
Author(s):  
Xiaomin Wu ◽  
Guang Ma ◽  
Chuanyang Liu ◽  
Xin-yuan Qiu ◽  
Lu Min ◽  
...  

Abstract Background Pinene is a monoterpene, that is used in the manufacture of fragrances, insecticide, fine chemicals, and renewable fuels. Production of pinene by metabolic-engineered microorganisms is a sustainable method. Purple non-sulfur photosynthetic bacteria belong to photosynthetic chassis that are widely used to synthesize natural chemicals. To date, researches on the synthesis of pinene by purple non-sulfur photosynthetic bacteria has not been reported, leaving the potential of purple non-sulfur photosynthetic bacteria synthesizing pinene unexplored. Results Rhodobacter sphaeroides strain was applied as a model and engineered to express the fusion protein of heterologous geranyl diphosphate synthase (GPPS) and pinene synthase (PS), hence achieving pinene production. The reaction condition of pinene production was optimized and 97.51 μg/L of pinene was yielded. Then, genes of 1-deoxy-d-xylulose 5-phosphate synthase, 1-deoxy-d-xylulose 5-phosphate reductoisomerase and isopentenyl diphosphate isomerase were overexpressed, and the ribosome binding site of GPPS-PS mRNA was optimized, improving pinene titer to 539.84 μg/L. Conclusions In this paper, through heterologous expression of GPPS-PS, pinene was successfully produced in R. sphaeroides, and pinene production was greatly improved by optimizing the expression of key enzymes. This is the first report on pinene produce by purple non-sulfur photosynthetic bacteria, which expands the availability of photosynthetic chassis for pinene production.





2021 ◽  
Author(s):  
Xiaomin Wu ◽  
Guang Ma ◽  
Chuanyang Liu ◽  
Xin-yuan Qiu ◽  
Lu Min ◽  
...  

Abstract Background: Pinene is a monoterpene, that is used in the manufacture of fragrances, insecticide, fine chemicals, and renewable fuels. Production of pinene by metabolic-engineered microorganisms is a sustainable method. Purple non-sulfur photosynthetic bacteria belong to photosynthetic chassis that are widely used to synthesize natural chemicals. To date, researches on the synthesis of pinene by purple non-sulfur photosynthetic bacteria has not been reported, leaving the potential of purple non-sulfur photosynthetic bacteria synthesizing pinene unexplored. Results: Rhodobacter sphaeroides strain was applied as a model and engineered to express the fusion protein of heterologous geranyl diphosphate synthase (GPPS) and pinene synthase (PS), hence achieving pinene production. The reaction condition of pinene production was optimized and 97.51 μg/L of pinene was yielded. Then, genes of 1-deoxy-D-xylulose 5-phosphate synthase, 1-deoxy-D-xylulose 5-phosphate reductoisomerase and isopentenyl diphosphate isomerase were overexpressed, and the ribosome binding site of GPPS-PS mRNA was optimized, improving pinene titer to 539.84 μg/L. Conclusions: In this paper, through heterologous expression of GPPS-PS, pinene was successfully produced in R. sphaeroides, and pinene production was greatly improved by optimizing the expression of key enzymes. This is the first report on pinene produce by purple non-sulfur photosynthetic bacteria, which expands the availability of photosynthetic chassis for pinene production.



2020 ◽  
Vol 30 (22) ◽  
pp. 127577
Author(s):  
Walid M. Abdelmagid ◽  
Niusha Mahmoodi ◽  
Martin E. Tanner


Author(s):  
Ning Yan ◽  
Hongbo Zhang ◽  
Zhongfeng Zhang ◽  
John Shi ◽  
Michael P. Timko ◽  
...  

Solanesol is a noncyclic terpene alcohol composed of nine isoprene units and it mainly accumulates in solanaceous plants, especially tobacco (Nicotiana tabacum L.). Here, RNA-seq analyses of tobacco leaves, stems, and roots were used to identify solanesol biosynthesis genes. Six 1-deoxy-d-xylulose 5-phosphate synthase, two 1-deoxy-d-xylulose 5-phosphate reductoisomerase, two 2-C-methyl-d-erythritol 4-phosphate cytidylyltransferase, four 4-diphosphocytidyl-2-C-methyl-d-erythritol kinase, two 2-C-methyl-d-erythritol 2,4-cyclodiphosphate synthase, four 1-hydroxy-2-methyl-2-(E)-butenyl 4-diphosphate synthase, two 1-hydroxy-2-methyl-2-(E)-butenyl 4-diphosphate reductase, six isopentenyl diphosphate isomerase, and two solanesyl diphosphate synthase (SPS) genes were identified to be involved in solanesol biosynthesis. Furthermore, the two N. tabacum SPS (NtSPS1 and NtSPS2), which had two conserved aspartate-rich DDxxD domains, were highly homologous with SPS enzymes from other solanaceous plant species. In addition, the solanesol contents of three organs, and leaves from four growing stages, corresponded with the distribution of chlorophyll. Our findings provide a comprehensive evaluation of the correlation between the expression of different biosynthetic genes and the accumulation of solanesol in tobacco.



2016 ◽  
Vol 88 (1) ◽  
pp. 82-94 ◽  
Author(s):  
Ilya Pankratov ◽  
Ryan McQuinn ◽  
Jochanan Schwartz ◽  
Einat Bar ◽  
Zhangjun Fei ◽  
...  


Biochimie ◽  
2016 ◽  
Vol 127 ◽  
pp. 133-143 ◽  
Author(s):  
Karine Berthelot ◽  
Yannick Estevez ◽  
Miguel Quiliano ◽  
Pedro A. Baldera-Aguayo ◽  
Mirko Zimic ◽  
...  


Sign in / Sign up

Export Citation Format

Share Document