geranyl diphosphate
Recently Published Documents


TOTAL DOCUMENTS

116
(FIVE YEARS 36)

H-INDEX

30
(FIVE YEARS 3)

2021 ◽  
Vol 118 (52) ◽  
pp. e2110092118
Author(s):  
Sandra T. Krause ◽  
Pan Liao ◽  
Christoph Crocoll ◽  
Benoît Boachon ◽  
Christiane Förster ◽  
...  

Thymol and carvacrol are phenolic monoterpenes found in thyme, oregano, and several other species of the Lamiaceae. Long valued for their smell and taste, these substances also have antibacterial and anti-spasmolytic properties. They are also suggested to be precursors of thymohydroquinone and thymoquinone, monoterpenes with anti-inflammatory, antioxidant, and antitumor activities. Thymol and carvacrol biosynthesis has been proposed to proceed by the cyclization of geranyl diphosphate to γ-terpinene, followed by a series of oxidations via p-cymene. Here, we show that γ-terpinene is oxidized by cytochrome P450 monooxygenases (P450s) of the CYP71D subfamily to produce unstable cyclohexadienol intermediates, which are then dehydrogenated by a short-chain dehydrogenase/reductase (SDR) to the corresponding ketones. The subsequent formation of the aromatic compounds occurs via keto–enol tautomerisms. Combining these enzymes with γ-terpinene in in vitro assays or in vivo in Nicotiana benthamiana yielded thymol and carvacrol as products. In the absence of the SDRs, only p-cymene was formed by rearrangement of the cyclohexadienol intermediates. The nature of these unstable intermediates was inferred from reactions with the γ-terpinene isomer limonene and by analogy to reactions catalyzed by related enzymes. We also identified and characterized two P450s of the CYP76S and CYP736A subfamilies that catalyze the hydroxylation of thymol and carvacrol to thymohydroquinone when heterologously expressed in yeast and N. benthamiana. Our findings alter previous views of thymol and carvacrol formation, identify the enzymes involved in the biosynthesis of these phenolic monoterpenes and thymohydroquinone in the Lamiaceae, and provide targets for metabolic engineering of high-value terpenes in plants.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Ruchika Mittal ◽  
Gauri Srivastava ◽  
Deepak Ganjewala

Abstract Monoterpenes, a class of isoprenoid compounds, are extensively used in flavor, fragrance, perfumery, and cosmetics. They display many astonishing bioactive properties of biological and pharmacological significance. All monoterpenes are derived from universal precursor geranyl diphosphate. The demand for new monoterpenoids has been increasing in flavor, fragrances, perfumery, and pharmaceuticals. Chemical methods, which are harmful for human and the environment, synthesize most of these products. Over the years, researchers have developed alternative methods for the production of newer monoterpenoids. Microbial biotransformation is one of them, which relied on microbes and their enzymes. It has produced many new desirable commercially important monoterpenoids. A growing number of reports reflect an ever-expanding scope of microbial biotransformation in food and aroma industries. Simultaneously, our knowledge of the enzymology of monoterpene biosynthetic pathways has been increasing, which facilitated the biotransformation of monoterpenes. In this article, we have covered the progress made on microbial biotransformation of commercial monoterpenes with a brief introduction to their biosynthesis. We have collected several reports from authentic web sources, including Google Scholar, Pubmed, Web of Science, and Scopus published in the past few years to extract information on the topic.


2021 ◽  
Vol 12 ◽  
Author(s):  
Zerui Yang ◽  
Chunzhu Xie ◽  
Ting Zhan ◽  
Linhuan Li ◽  
Shanshan Liu ◽  
...  

Trans-isopentenyl diphosphate synthases (TIDSs) genes are known to be important determinants for terpene diversity and the accumulation of terpenoids. The essential oil of Cinnamomum camphora, which is rich in monoterpenes, sesquiterpenes, and other aromatic compounds, has a wide range of pharmacological activities and has therefore attracted considerable interest. However, the TIDS gene family, and its relationship to the camphor tree (C. camphora L. Presl.), has not yet been characterized. In this study, we identified 10 TIDS genes in the genome of the C. camphora borneol chemotype that were unevenly distributed on chromosomes. Synteny analysis revealed that the TIDS gene family in this species likely expanded through segmental duplication events. Furthermore, cis-element analyses demonstrated that C. camphora TIDS (CcTIDS) genes can respond to multiple abiotic stresses. Finally, functional characterization of eight putative short-chain TIDS proteins revealed that CcTIDS3 and CcTIDS9 exhibit farnesyl diphosphate synthase (FPPS) activity, while CcTIDS1 and CcTIDS2 encode geranylgeranyl diphosphate synthases (GGPPS). Although, CcTIDS8 and CcTIDS10 were found to be catalytically inactive alone, they were able to bind to each other to form a heterodimeric functional geranyl diphosphate synthase (GPPS) in vitro, and this interaction was confirmed using a yeast two-hybrid assay. Furthermore, transcriptome analysis revealed that the CcTIDS3, CcTIDS8, CcTIDS9, and CcTIDS10 genes were found to be more active in C. camphora roots as compared to stems and leaves, which were verified by quantitative real-time PCR (qRT-PCR). These novel results provide a foundation for further exploration of the role of the TIDS gene family in camphor trees, and also provide a potential mechanism by which the production of camphor tree essential oil could be increased for pharmacological purposes through metabolic engineering.


2021 ◽  
Vol 22 (17) ◽  
pp. 9373
Author(s):  
Kai Hong ◽  
Limin Wang ◽  
Agbaka Johnpaul ◽  
Chenyan Lv ◽  
Changwei Ma

Humulus lupulus L. is an essential source of aroma compounds, hop bitter acids, and xanthohumol derivatives mainly exploited as flavourings in beer brewing and with demonstrated potential for the treatment of certain diseases. To acquire a comprehensive understanding of the biosynthesis of these compounds, the primary enzymes involved in the three major pathways of hops’ phytochemical composition are herein critically summarized. Hops’ phytochemical components impart bitterness, aroma, and antioxidant activity to beers. The biosynthesis pathways have been extensively studied and enzymes play essential roles in the processes. Here, we introduced the enzymes involved in the biosynthesis of hop bitter acids, monoterpenes and xanthohumol derivatives, including the branched-chain aminotransferase (BCAT), branched-chain keto-acid dehydrogenase (BCKDH), carboxyl CoA ligase (CCL), valerophenone synthase (VPS), prenyltransferase (PT), 1-deoxyxylulose-5-phosphate synthase (DXS), 4-hydroxy-3-methylbut-2-enyl diphosphate reductase (HDR), Geranyl diphosphate synthase (GPPS), monoterpene synthase enzymes (MTS), cinnamate 4-hydroxylase (C4H), chalcone synthase (CHS_H1), chalcone isomerase (CHI)-like proteins (CHIL), and O-methyltransferase (OMT1). Furthermore, research advancements of each enzyme in terms of reaction conditions, substrate recognition, enzyme structures, and use in engineered microbes are described in depth. Hence, an extensive review of the key enzymes involved in the phytochemical compounds of hops will provide fundamentals for their applications in beer production.


2021 ◽  
Vol 20 (1) ◽  
Author(s):  
Xiaomin Wu ◽  
Guang Ma ◽  
Chuanyang Liu ◽  
Xin-yuan Qiu ◽  
Lu Min ◽  
...  

Abstract Background Pinene is a monoterpene, that is used in the manufacture of fragrances, insecticide, fine chemicals, and renewable fuels. Production of pinene by metabolic-engineered microorganisms is a sustainable method. Purple non-sulfur photosynthetic bacteria belong to photosynthetic chassis that are widely used to synthesize natural chemicals. To date, researches on the synthesis of pinene by purple non-sulfur photosynthetic bacteria has not been reported, leaving the potential of purple non-sulfur photosynthetic bacteria synthesizing pinene unexplored. Results Rhodobacter sphaeroides strain was applied as a model and engineered to express the fusion protein of heterologous geranyl diphosphate synthase (GPPS) and pinene synthase (PS), hence achieving pinene production. The reaction condition of pinene production was optimized and 97.51 μg/L of pinene was yielded. Then, genes of 1-deoxy-d-xylulose 5-phosphate synthase, 1-deoxy-d-xylulose 5-phosphate reductoisomerase and isopentenyl diphosphate isomerase were overexpressed, and the ribosome binding site of GPPS-PS mRNA was optimized, improving pinene titer to 539.84 μg/L. Conclusions In this paper, through heterologous expression of GPPS-PS, pinene was successfully produced in R. sphaeroides, and pinene production was greatly improved by optimizing the expression of key enzymes. This is the first report on pinene produce by purple non-sulfur photosynthetic bacteria, which expands the availability of photosynthetic chassis for pinene production.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Jiang Shi ◽  
Jiatong Wang ◽  
Haipeng Lv ◽  
Qunhua Peng ◽  
Monika Schreiner ◽  
...  

AbstractIn response to preharvest priming with exogenous methyl jasmonate (MeJA), tea plants adjust their physiological behavior at the molecular level. The whole-organism reconfiguration of aroma formation from the precursor to storage is poorly understood. In this study, we performed iTRAQ proteomic analysis and identified 337, 246, and 413 differentially expressed proteins in tea leaves primed with MeJA for 12 h, 24 h, and 48 h, respectively. Furthermore, a total of 266 nonvolatile and 100 volatile differential metabolites were identified by utilizing MS-based metabolomics. A novel approach that incorporated the integration of extended self-organizing map-based dimensionality was applied. The vivid time-scale changes tracing physiological responses in MeJA-primed tea leaves are marked in these maps. Jasmonates responded quickly to the activation of the jasmonic acid pathway in tea leaves, while hydroxyl and glycosyl jasmonates were biosynthesized simultaneously on a massive scale to compensate for the exhausted defense. The levels of α-linolenic acid, geranyl diphosphate, farnesyl diphosphate, geranylgeranyl diphosphate, and phenylalanine, which are crucial aroma precursors, were found to be significantly changed in MeJA-primed tea leaves. Green leaf volatiles, volatile terpenoids, and volatile phenylpropanoids/benzenoids were spontaneously biosynthesized from responding precursors and subsequently converted to their corresponding glycosidic forms, which can be stably stored in tea leaves. This study elucidated the physiological response of tea leaves primed with exogenous methyl jasmonate and revealed the molecular basis of source and sink changes on tea aroma biosynthesis and catabolism in response to exogenous stimuli. The results significantly enhance our comprehensive understanding of tea plant responses to exogenous treatment and will lead to the development of promising biotechnologies to improve fresh tea leaf quality.


PLoS ONE ◽  
2021 ◽  
Vol 16 (3) ◽  
pp. e0248404
Author(s):  
Qinghua Zhu ◽  
Weige Cheng ◽  
Yongxiang Song ◽  
Qing He ◽  
Jianhua Ju ◽  
...  

Streptomyces niveus SCSIO 3406 was isolated from a sediment sample collected from South China Sea at a depth of 3536 m. Four new sesquiterpenoid naphthoquinones, marfuraquinocins A-D, and two new geranylated phenazines, i. e. phenaziterpenes A and B, were isolated from the fermentation broth of the strain. Here, we present its genome sequence, which contains 7,990,492 bp with a G+C content of 70.46% and harbors 7088 protein-encoding genes. The genome sequence analysis revealed the presence of a 28,787 bp gene cluster encoding for 24 open reading frames including 1,3,6,8-tetrahydroxynaphthalene synthase and monooxygenase, seven phenazine biosynthesis proteins, two prenyltransferases and a squalene-hopene cyclase. These genes are known to be necessary for the biosynthesis of both marfuraquinocins and phenaziterpenes. Outside the gene cluster (and scattered around the genome), there are seven genes belonging to the methylerythritol phosphate pathway for the biosynthesis of the essential primary metabolite, isopentenyl diphosphate, as well as six geranyl diphosphate/farnesyl diphosphate synthase genes. The strain S. niveus SCSIO 3406 showed type I PKS, type III PKS and nonribosomal peptide synthetase cluster. The sequence will provide the genetic basis for better understanding of biosynthesis mechanism of the above mentioned six compounds and for the construction of improved strain for the industrial production of antimicrobial agents.


2021 ◽  
Author(s):  
Xiaomin Wu ◽  
Guang Ma ◽  
Chuanyang Liu ◽  
Xin-yuan Qiu ◽  
Lu Min ◽  
...  

Abstract Background: Pinene is a monoterpene, that is used in the manufacture of fragrances, insecticide, fine chemicals, and renewable fuels. Production of pinene by metabolic-engineered microorganisms is a sustainable method. Purple non-sulfur photosynthetic bacteria belong to photosynthetic chassis that are widely used to synthesize natural chemicals. To date, researches on the synthesis of pinene by purple non-sulfur photosynthetic bacteria has not been reported, leaving the potential of purple non-sulfur photosynthetic bacteria synthesizing pinene unexplored. Results: Rhodobacter sphaeroides strain was applied as a model and engineered to express the fusion protein of heterologous geranyl diphosphate synthase (GPPS) and pinene synthase (PS), hence achieving pinene production. The reaction condition of pinene production was optimized and 97.51 μg/L of pinene was yielded. Then, genes of 1-deoxy-D-xylulose 5-phosphate synthase, 1-deoxy-D-xylulose 5-phosphate reductoisomerase and isopentenyl diphosphate isomerase were overexpressed, and the ribosome binding site of GPPS-PS mRNA was optimized, improving pinene titer to 539.84 μg/L. Conclusions: In this paper, through heterologous expression of GPPS-PS, pinene was successfully produced in R. sphaeroides, and pinene production was greatly improved by optimizing the expression of key enzymes. This is the first report on pinene produce by purple non-sulfur photosynthetic bacteria, which expands the availability of photosynthetic chassis for pinene production.


2021 ◽  
Vol 22 (2) ◽  
pp. 605
Author(s):  
Yapei Zhao ◽  
Tian Hu ◽  
Ruiqi Liu ◽  
Zhiqiang Hao ◽  
Guoyan Liang ◽  
...  

Selaginella moellendorffii is a lycophyte, a member of an ancient vascular plant lineage. Two distinct types of terpene synthase (TPS) genes were identified from this species, including S. moellendorffii TPS genes (SmTPSs) and S. moellendorffii microbial TPS-like genes (SmMTPSLs). The goal of this study was to investigate the biochemical functions of SmMTPSLs. Here, eight full-length SmMTPSL genes (SmMTPSL5, -15, -19, -23, -33, -37, -46, and -47) were functionally characterized from S. moellendorffii. Escherichia coli-expressed recombinant SmMTPSLs were tested for monoterpenes synthase and sesquiterpenes synthase activities. These enzymatic products were typical monoterpenes and sesquiterpenes that have been previous shown to be generated by typical plant TPSs when provided with geranyl diphosphate (GPP) and farnesyl diphosphate (FPP) as the substrates. Meanwhile, SmMTPSL23, -33, and -37 were up-regulated when induced by alamethicin (ALA) and methyl jasmonate (MeJA), suggesting a role for these genes in plants response to abiotic stresses. Furthermore, this study pointed out that the terpenoids products of SmMTPSL23, -33, and -37 have an antibacterial effect on Pseudomonas syringae pv. tomato DC3000 and Staphylococcus aureus. Taken together, these results provide more information about the catalytic and biochemical function of SmMTPSLs in S. moellendorffii plants.


2020 ◽  
Vol 5 (4) ◽  
pp. 312-318
Author(s):  
Swati Dubey ◽  
Sheela Joshi ◽  
Goshali Dwivedi ◽  
Rajendra Prasad

An essential step in network modelling is to validate the network model. Petri net theory provides algorithms and methods, which can be applied directly to metabolic network modelling and analysis in order to validate the model. This paper describes the thriving application of Petri net theory for model validation of biosynthesis of menthol using the well-established Petri net analysis technique of place and transition invariants. Because of the complexity of metabolic networks and their regulation, formal modelling is a useful method to improve the understanding of these systems. A petri net representation, its validation and simulation of biosynthesis of menthol from geranyl diphosphate (GPP) has been performed with the objective of understating new insights of the structure of this pathway affecting the synthesis of menthol. The model has been validated for its P-invariant and T-invariant. T-invariant analysis suggest absence of any loop in the net which restore the initial state suggesting all reactions to be only forward. The net is covered by positive P-invariants and bounded. The net is utilized to simulate the time (pt) with concentrations of GPP, (−)- limonene, (+)-pulegone, (−)-menthone and (−)-menthol. Dimethylallyl diphosphate and isopentenyl diphosphate were the main precursors for this biosynthesis. Biological data needed for simulation where obtained from extensive survey of literature. The results were shown graphically and the nature of graphs represent the variation of concentrations with time.


Sign in / Sign up

Export Citation Format

Share Document