fine chemicals
Recently Published Documents


TOTAL DOCUMENTS

1163
(FIVE YEARS 157)

H-INDEX

67
(FIVE YEARS 6)

2022 ◽  
Author(s):  
Challenger Mishra ◽  
Niklas von Wolff ◽  
Abhinav Tripathi ◽  
Eric Brémond ◽  
Annika Preiss ◽  
...  

Catalytic hydrogenation of esters is a sustainable approach for the production of fine chemicals, and pharmaceutical drugs. However, the efficiency and cost of catalysts are often the bottlenecks in the commercialization of such technologies. The conventional approach of catalyst discovery is based on empiricism that makes the discovery process time-consuming and expensive. There is an urgent need to develop effective approaches to discover efficient catalysts for hydrogenation reactions. We demonstrate here the approach of machine learning for the prediction of out-comes for the catalytic hydrogenation of esters. Our models can predict the reaction yields with high mean accuracies of up to 91% (test set) and suggest that the use of certain chemical descriptors selectively can result in a more accurate model. Furthermore, cata-lysts and some of their corresponding descriptors can also be pre-dicted with mean accuracies of 85%, and >90%, respectively.


2022 ◽  
Author(s):  
Yuan-Chung (Oliver) Lin ◽  
Kassian T.T. Amesho ◽  
S. Venkata Mohan

Abstract Green chemistry techniques for the exploitation of renewable resources have emerged as beneficial techniques for producing sustainable biofuels and high value-added carbon-based fine chemicals with the potential to decrease the impact of anthropogenic activities on the environment. Despite various green chemistry technologies for processing renewable resources into different valuable products, there are still several major issues concerning the pretreatment processes and techniques, such as high cost and high-energy consumption. Thankfully, deep eutectic solvents (DESs), a potentially attractive “green solvent” biodegradable substitute to environmentally harmful organic solvents, have been progressively exploited for renewable resources processing. Therefore, the central focus of this review is to present recent developments and challenges of DESs as processing green solvents for renewable resources. We believe this comprehensive review will provide new insights towards developing state-of-the-art sustainable and new green technologies for the efficient processing of renewable resources for sustainable biofuels and value-added carbon-based fine chemicals.


Author(s):  
Daniele Cartagenova ◽  
Stephan Bachmann ◽  
Kurt Püntener ◽  
Michelangelo Scalone ◽  
Mark A Newton ◽  
...  

Cross-coupling reactions are a fundamental tool in the large scale synthesis of pharma-, agro- and fine chemicals. Homogeneous palladium complexes remain the state-of-the-art catalysts even though the use of heterogeneous...


2022 ◽  
pp. 260-285
Author(s):  
Nidhi Yogeshbhai Patel ◽  
Shivani Maheshkumar Yagnik ◽  
Dhritiksha Mansukhbhai Baria ◽  
Vikram Hiren Raval

Extremophiles are at center stage of scientific interest owing to their peculiar properties in terms of physiology, ecology, biochemistry, and molecular genetics. The bio-active compounds from extremophiles involve various types of extremolytes. The functional applicability of extremophiles has been far-reaching. Looking to the global scenario medical, pharmaceutical and allied healthcare sectors have a persistent surge for a novel anticancer, antimicrobial, stable drug deliverables, nutraceuticals, fine chemicals, natural antioxidants, and bio-polymers compounds. Genetic engineering tools clubbed with -omics approach enhance and better the chances for applicability of the extremophilic metabolites in varied sectors of red and yellow biotechnology. The chapter provides an insight into the various types of bio-active molecules from extremophiles and their wide biotechnological applicability in the medical and pharmaceutical industry.


Catalysts ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1479
Author(s):  
Guanyu Jiang ◽  
Xinduo Sun ◽  
Fanrui Zhou ◽  
Kun Liang ◽  
Qian Chen

Abietic acid and its derivatives have broadly been used in fine chemicals and are renewable resources. Its inherent chiral rigid tricyclic phenanthrene skeleton is unique. Its utilities in asymmetric catalysis remain to be explored. A series new amide-type chiral quaternary ammoniums bearing dehydroabietylamine were designed, and prepared by two convenient steps. Acylation of dehydroabietylamine with bromoacetyl chloride afforded amide holding bromoacetyl group in higher yields using triethyl amine as base. Subsequent quaternization reaction gave the desired amide-type chiral quaternary ammoniums. The new chiral quaternary ammoniums can be used as phase-transfer catalyst (PTC) for the transition metal-catalysed alkynylation of isatin derivatives.


ChemTexts ◽  
2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Baoxin Zhang ◽  
Dilver Peña Fuentes ◽  
Armin Börner

AbstractHydroformylation is one of the most important homogeneously catalyzed reactions on an industrial scale. The manufacture of bulk chemicals clearly dominates. Large cobalt- and rhodium-based processes are mature technologies that have been developed over the past 80 years. Meanwhile, the potential of hydroformylation for the production of fine chemicals (perfumes, pharmaceuticals) has also been recognized. This review gives insight into the state-of-the-art of the reaction and its development. It commences with some remarks on the accidental discovery by the German chemist Otto Roelen within the historical and personal framework of the Fischer–Tropsch process, followed by the mechanistic basics of the catalytic cycle, metals used for the catalyst as well as their organic ligands. In addition, the stability of ligands and catalysts is addressed. The huge potential of this transformation is demonstrated using a variety of substrates. Finally, the use of some surrogates for syngas is discussed.


2021 ◽  
Author(s):  
Kurra Mohan ◽  
Bollikolla Hari Babu ◽  
Khandapu Bala Murali Krishna ◽  
Kotra Vijay ◽  
Varala Ravi

This title of the book chapter deals with the late transition metal-NHC (N-heterocyclic carbene) catalyzed transformations of renewable chemicals, i.e., bio-mass resources (carbohydrates/vegetable oils/natural products) into useful chemicals via oxidation, hydrogenation, dehydration, polymerization, hydrolysis, etc. along with brief introductory notes on late transition metals, carbenes, and renewable chemicals for better understanding to the reader.


Materials ◽  
2021 ◽  
Vol 14 (22) ◽  
pp. 6796
Author(s):  
Andrea Lazzarini ◽  
Roberta Colaiezzi ◽  
Francesco Gabriele ◽  
Marcello Crucianelli

Heterogeneous catalysts are progressively expanding their field of application, from high-throughput reactions for traditional industrial chemistry with production volumes reaching millions of tons per year, a sector in which they are key players, to more niche applications for the production of fine chemicals. These novel applications require a progressive utilization reduction of fossil feedstocks, in favor of renewable ones. Biomasses are the most accessible source of organic precursors, having as advantage their low cost and even distribution across the globe. Unfortunately, they are intrinsically inhomogeneous in nature and their efficient exploitation requires novel catalysts. In this process, an accurate design of the active phase performing the reaction is important; nevertheless, we are often neglecting the importance of the support in guaranteeing stable performances and improving catalytic activity. This review has the goal of gathering and highlighting the cases in which the supports (either derived or not from biomass wastes) share the worth of performing the catalysis with the active phase, for those reactions involving the synthesis of fine chemicals starting from biomasses as feedstocks.


Sign in / Sign up

Export Citation Format

Share Document