electronic nematicity
Recently Published Documents


TOTAL DOCUMENTS

37
(FIVE YEARS 16)

H-INDEX

11
(FIVE YEARS 3)

2021 ◽  
Vol 118 (34) ◽  
pp. e2106881118
Author(s):  
Naman K. Gupta ◽  
Christopher McMahon ◽  
Ronny Sutarto ◽  
Tianyu Shi ◽  
Rantong Gong ◽  
...  

During the last decade, translational and rotational symmetry-breaking phases—density wave order and electronic nematicity—have been established as generic and distinct features of many correlated electron systems, including pnictide and cuprate superconductors. However, in cuprates, the relationship between these electronic symmetry-breaking phases and the enigmatic pseudogap phase remains unclear. Here, we employ resonant X-ray scattering in a cuprate high-temperature superconductor La1.6−xNd0.4SrxCuO4 (Nd-LSCO) to navigate the cuprate phase diagram, probing the relationship between electronic nematicity of the Cu 3d orbitals, charge order, and the pseudogap phase as a function of doping. We find evidence for a considerable decrease in electronic nematicity beyond the pseudogap phase, either by raising the temperature through the pseudogap onset temperature T* or increasing doping through the pseudogap critical point, p*. These results establish a clear link between electronic nematicity, the pseudogap, and its associated quantum criticality in overdoped cuprates. Our findings anticipate that electronic nematicity may play a larger role in understanding the cuprate phase diagram than previously recognized, possibly having a crucial role in the phenomenology of the pseudogap phase.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
P. Wiecki ◽  
M. Frachet ◽  
A.-A. Haghighirad ◽  
T. Wolf ◽  
C. Meingast ◽  
...  

AbstractElectronic nematicity is often found in unconventional superconductors, suggesting its relevance for electronic pairing. In the strongly hole-doped iron-based superconductors, the symmetry channel and strength of the nematic fluctuations, as well as the possible presence of long-range nematic order, remain controversial. Here, we address these questions using transport measurements under elastic strain. By decomposing the strain response into the appropriate symmetry channels, we demonstrate the emergence of a giant in-plane symmetric contribution, associated with the growth of both strong electronic correlations and the sensitivity of these correlations to strain. We find weakened remnants of the nematic fluctuations that are present at optimal doping, but no change in the symmetry channel of nematic fluctuations with hole doping. Furthermore, we find no indication of a nematic-ordered state in the AFe2As2 (A = K, Rb, Cs) superconductors. These results revise the current understanding of nematicity in hole-doped iron-based superconductors.


2021 ◽  
Vol 64 (3) ◽  
Author(s):  
Wen Wang ◽  
Jun Luo ◽  
ChunGuang Wang ◽  
Jie Yang ◽  
Yasuharu Kodama ◽  
...  

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Zheng Ren ◽  
Hong Li ◽  
He Zhao ◽  
Shrinkhala Sharma ◽  
Ziqiang Wang ◽  
...  

AbstractIn a material prone to a nematic instability, anisotropic strain in principle provides a preferred symmetry-breaking direction for the electronic nematic state to follow. This is consistent with experimental observations, where electronic nematicity and structural anisotropy typically appear hand-in-hand. In this work, we discover that electronic nematicity can be locally decoupled from the underlying structural anisotropy in strain-engineered iron-selenide (FeSe) thin films. We use heteroepitaxial molecular beam epitaxy to grow FeSe with a nanoscale network of modulations that give rise to spatially varying strain. We map local anisotropic strain by analyzing scanning tunneling microscopy topographs, and visualize electronic nematic domains from concomitant spectroscopic maps. While the domains form so that the energy of nemato-elastic coupling is minimized, we observe distinct regions where electronic nematic ordering fails to flip direction, even though the underlying structural anisotropy is locally reversed. The findings point towards a nanometer-scale stiffness of the nematic order parameter.


2020 ◽  
Vol 5 (1) ◽  
Author(s):  
Xuanyu Long ◽  
Shunhong Zhang ◽  
Fa Wang ◽  
Zheng Liu

2020 ◽  
Vol 124 (25) ◽  
Author(s):  
Liran Wang ◽  
Mingquan He ◽  
Frédéric Hardy ◽  
Dai Aoki ◽  
Kristin Willa ◽  
...  

2020 ◽  
Vol 117 (20) ◽  
pp. 10654-10659 ◽  
Author(s):  
Jie Wu ◽  
Hari P. Nair ◽  
Anthony T. Bollinger ◽  
Xi He ◽  
Ian Robinson ◽  
...  

We have measured the angle-resolved transverse resistivity (ARTR), a sensitive indicator of electronic anisotropy, in high-quality thin films of the unconventional superconductor Sr2RuO4 grown on various substrates. The ARTR signal, heralding the electronic nematicity or a large nematic susceptibility, is present and substantial already at room temperature and grows by an order of magnitude upon cooling down to 4 K. In Sr2RuO4 films deposited on tetragonal substrates the highest-conductivity direction does not coincide with any crystallographic axis. In films deposited on orthorhombic substrates it tends to align with the shorter axis; however, the magnitude of the anisotropy stays the same despite the large lattice distortion. These are strong indications of actual or incipient electronic nematicity in Sr2RuO4.


Sign in / Sign up

Export Citation Format

Share Document