h3k9 trimethylation
Recently Published Documents


TOTAL DOCUMENTS

36
(FIVE YEARS 17)

H-INDEX

12
(FIVE YEARS 3)

2021 ◽  
Author(s):  
Alexia Klonou ◽  
Penelope Korkolopoulou ◽  
Antonios N. Gargalionis ◽  
Dimitrios S. Kanakoglou ◽  
Hector Katifelis ◽  
...  

2021 ◽  
pp. jmedgenet-2021-107747
Author(s):  
Riku Katainen ◽  
Iikki Donner ◽  
Maritta Räisänen ◽  
Davide Berta ◽  
Anna Kuosmanen ◽  
...  

BackgroundGenes involved in epigenetic regulation are central for chromatin structure and gene expression. Specific mutations in these might promote carcinogenesis in several tissue types.MethodsWe used exome, whole-genome and Sanger sequencing to detect rare variants shared by seven affected individuals in a striking early-onset multi-cancer family. The only variant that segregated with malignancy resided in a histone demethylase KDM4C. Consequently, we went on to study the epigenetic landscape of the mutation carriers with ATAC, ChIP (chromatin immunoprecipitation) and RNA-sequencing from lymphoblastoid cell lines to identify possible pathogenic effects.ResultsA novel variant in KDM4C, encoding a H3K9me3 histone demethylase and transcription regulator, was found to segregate with malignancy in the family. Based on Roadmap Epigenomics Project data, differentially accessible chromatin regions between the variant carriers and controls enrich to normally H3K9me3-marked chromatin. We could not detect a difference in global H3K9 trimethylation levels. However, carriers of the variant seemed to have more trimethylated H3K9 at transcription start sites. Pathway analyses of ChIP-seq and differential gene expression data suggested that genes regulated through KDM4C interaction partner EZH2 and its interaction partner PLZF are aberrantly expressed in mutation carriers.ConclusionsThe apparent dysregulation of H3K9 trimethylation and KDM4C-associated genes in lymphoblastoid cells supports the hypothesis that the KDM4C variant is causative of the multi-cancer susceptibility in the family. As the variant is ultrarare, located in the conserved catalytic JmjC domain and predicted pathogenic by the majority of available in silico tools, further studies on the role of KDM4C in cancer predisposition are warranted.


eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Tessa M Bertozzi ◽  
Nozomi Takahashi ◽  
Geula Hanin ◽  
Anastasiya Kazachenka ◽  
Anne C Ferguson-Smith

Intracisternal A-particles (IAPs) are endogenous retroviruses (ERVs) responsible for most insertional mutations in the mouse. Full-length IAPs harbour genes flanked by long terminal repeats (LTRs). Here, we identify a solo LTR IAP variant (Iap5-1solo) recently formed in the inbred C57BL/6J mouse strain. In contrast to the C57BL/6J full-length IAP at this locus (Iap5-1full), Iap5-1solo lacks DNA methylation and H3K9 trimethylation. The distinct DNA methylation levels between the two alleles are established during preimplantation development, likely due to loss of KRAB zinc finger protein binding at the Iap5-1solo variant. Iap5-1solo methylation increases and becomes more variable in a hybrid genetic background yet is unresponsive to maternal dietary methyl supplementation. Differential epigenetic modification of the two variants is associated with metabolic differences and tissue-specific changes in adjacent gene expression. Our characterisation of Iap5-1 as a genetically induced epiallele with functional consequences establishes a new model to study transposable element repression and host-element co-evolution.


2021 ◽  
Vol 167 ◽  
pp. 22-32
Author(s):  
Baole Zhang ◽  
Xiao Han ◽  
Qing Gao ◽  
Jie Liu ◽  
Saisai Li ◽  
...  

2020 ◽  
Author(s):  
Tessa M. Bertozzi ◽  
Geula Hanin ◽  
Nozomi Takahashi ◽  
Anastasiya Kazachenka ◽  
Anne C. Ferguson-Smith

AbstractIntracisternal A-particles (IAPs) are endogenous retroviruses (ERVs) responsible for most insertional mutations in the mouse. Full-length IAPs harbour genes flanked by long terminal repeats (LTRs). Here, we identify a solo LTR IAP variant (C57iap1solo) recently formed in the inbred C57BL/6J mouse strain. In contrast to the C57BL/6J full-length IAP at this locus (C57iap1full), C57iap1solo lacks DNA methylation and H3K9 trimethylation. The distinct DNA methylation levels between the two alleles are established during preimplantation development, likely due to loss of KRAB zinc finger protein binding at the C57iap1solo variant. C57iap1solo methylation increases and becomes more variable in a hybrid genetic background yet is unresponsive to maternal dietary methyl supplementation. Differential epigenetic modification of the two variants is associated with metabolic differences and tissue-specific changes in adjacent gene expression. Our characterisation of C57iap1 as a genetically-induced epiallele with functional consequences establishes a new model to study transposable element repression and host-element co-evolution.


Viruses ◽  
2020 ◽  
Vol 12 (8) ◽  
pp. 884 ◽  
Author(s):  
Franziska K. Geis ◽  
Stephen P. Goff

Almost half of the human genome is made up of transposable elements (TEs), and about 8% consists of endogenous retroviruses (ERVs). ERVs are remnants of ancient exogenous retrovirus infections of the germ line. Most TEs are inactive and not detrimental to the host. They are tightly regulated to ensure genomic stability of the host and avoid deregulation of nearby gene loci. Histone-based posttranslational modifications such as H3K9 trimethylation are one of the main silencing mechanisms. Trim28 is one of the identified master regulators of silencing, which recruits most prominently the H3K9 methyltransferase Setdb1, among other factors. Sumoylation and ATP-dependent chromatin remodeling factors seem to contribute to proper localization of Trim28 to ERV sequences and promote Trim28 interaction with Setdb1. Additionally, DNA methylation as well as RNA-mediated targeting of TEs such as piRNA-based silencing play important roles in ERV regulation. Despite the involvement of ERV overexpression in several cancer types, autoimmune diseases, and viral pathologies, ERVs are now also appreciated for their potential positive role in evolution. ERVs can provide new regulatory gene elements or novel binding sites for transcription factors, and ERV gene products can even be repurposed for the benefit of the host.


Author(s):  
Sean E. Healton ◽  
Hugo D. Pinto ◽  
Laxmi N. Mishra ◽  
Gregory A. Hamilton ◽  
Justin C. Wheat ◽  
...  

Nearly 50% of mouse and human genomes are composed of repetitive sequences. Transcription of these sequences is tightly controlled during development to prevent genomic instability, inappropriate gene activation and other maladaptive processes. Here, we demonstrate an integral role for H1 linker histones in silencing repetitive elements in mouse embryonic stem cells. Strong H1 depletion causes a profound de-repression of several classes of repetitive sequences, including major satellite, LINE-1, and ERV. Activation of repetitive sequence transcription is accompanied by decreased H3K9 trimethylation of repetitive sequence chromatin. H1 linker histones interact directly with Suv39h1, Suv39h2, and SETDB1, the histone methyltransferases responsible for H3K9 trimethylation of chromatin within these regions, and stimulate their activity toward chromatin in vitro. However, we also implicate chromatin compaction mediated by H1 as an additional, dominant repressive mechanism for silencing of repetitive major satellite sequences. Our findings elucidate two distinct, H1-mediated pathways for silencing heterochromatin.


Viruses ◽  
2020 ◽  
Vol 12 (6) ◽  
pp. 596 ◽  
Author(s):  
Kei Fukuda ◽  
Yoichi Shinkai

SETDB1 (SET domain bifurcated histone lysine methyltransferase 1) is a protein lysine methyltransferase and methylates histone H3 at lysine 9 (H3K9). Among other H3K9 methyltransferases, SETDB1 and SETDB1-mediated H3K9 trimethylation (H3K9me3) play pivotal roles for silencing of endogenous and exogenous retroelements, thus contributing to genome stability against retroelement transposition. Furthermore, SETDB1 is highly upregulated in various tumor cells. In this article, we describe recent advances about how SETDB1 activity is regulated, how SETDB1 represses various types of retroelements such as L1 and class I, II, and III endogenous retroviruses (ERVs) in concert with other epigenetic factors such as KAP1 and the HUSH complex and how SETDB1-mediated H3K9 methylation can be maintained during replication.


Sign in / Sign up

Export Citation Format

Share Document