photospheric level
Recently Published Documents


TOTAL DOCUMENTS

25
(FIVE YEARS 1)

H-INDEX

7
(FIVE YEARS 0)

2021 ◽  
Author(s):  
D.V. Romanov ◽  
◽  
K.V. Romanov ◽  
V.A. Romanov ◽  
E.A. Stepanov ◽  
...  


2020 ◽  
Vol 494 (4) ◽  
pp. 5751-5760 ◽  
Author(s):  
R R Paudel ◽  
J E Gizis ◽  
D J Mullan ◽  
S J Schmidt ◽  
A J Burgasser ◽  
...  

ABSTRACT $Kepler\, K2$ long cadence data are used to study white light flares in a sample of 45 L dwarfs. We identified 11 flares on 9 L dwarfs with equivalent durations of (1.3–198) h and total (UV/optical/IR) energies of ≥0.9 × 1032 erg. Two superflares with energies of >1033 erg were detected on an L5 dwarf (VVV BD001): this is the coolest object so far on which flares have been identified. The larger superflare on this L5 dwarf has an energy of 4.6 × 1034 erg and an amplitude of >300 times the photospheric level: so far, this is the largest amplitude flare detected by the Kepler/K2 mission. The next coolest star on which we identified a flare was an L2 dwarf: 2MASS J08585891+1804463. Combining the energies of all the flares which we have identified on 9 L dwarfs with the total observation time which was dedicated by Kepler to all 45 L dwarfs, we construct a composite flare frequency distribution (FFD). The FFD slope is quite shallow (−0.51 ± 0.17), consistent with earlier results reported by Paudel et al. for one particular L0 dwarf, for which the FFD slope was found to be −0.34. Using the composite FFD, we predict that, in early- and mid-L dwarfs, a superflare of energy 1033 erg occurs every 2.4 yr and a superflare of energy 1034 erg occurs every 7.9 yr. Analysis of our L dwarf flares suggests that magnetic fields of ≥0.13–1.3 kG are present on the stellar surface: such fields could suppress Type II radio bursts.



2018 ◽  
Vol 13 (S340) ◽  
pp. 198-199
Author(s):  
Nancy Narang ◽  
Kalugodu Chandrashekhar ◽  
Vaibhav Pant ◽  
Dipankar Banerjee

AbstractRecent dedicated HINODE polar region campaign revealed the presence of concentrated kilogauss patches of magnetic field in the polar regions of Sun which are also shown to be correlated with facular bright points at the photospheric level. In this work, we demonstrate that this spatial intermittency of the magnetic field persists even up to the chromospheric heights. Polar network bright points are the ones which are present in the polar regions of the Sun (above 70° latitudes). We use special HINODE campaigns devoted to observe polar regions of the Sun to study the polar network bright points during the phase of last extended solar minimum. We are able to find a considerable association between the polar network bright points and magnetic field concentrations which led us to conclude that these bright points can serve as a good proxy for polar magnetic fields where the direct and regular measurements of polar magnetic fields are not available (before 1970).





10.12737/7155 ◽  
2015 ◽  
Vol 1 (1) ◽  
pp. 75-84
Author(s):  
Анна Хлыстова ◽  
Anna Khlystova

Using data obtained with the Michelson Doppler Imager (MDI) onboard the Solar and Heliospheric Observatory (SOHO), we have conducted a statistical study of the relationship between plasma flow Doppler velocities and magnetic field parameters during the appearance of active regions at the solar photospheric level. We have examined 224 emerging active regions having different spatial scales and positions on the solar disc. The following relationships have been analysed: 1) those between the negative Doppler velocities and the position of active regions emerging on the solar disc; 2) those between the negative and positive Doppler velocities and the magnetic field parameters in the ac-tive regions emerging near the solar disc centre (the vertical component); 3) those between the negative and positive Doppler velocities and the magnetic field pa-rameters in the active regions emerging near the limb (the horizontal component); 4) those between the mag-netic flux growth rate and the strength of emerging magnetic fields; 5) those between the Doppler velocities and the magnetic field parameters during the first hours after the appearance of active regions with the total unsigned magnetic flux at the peak of their development.



2014 ◽  
Vol 10 (S305) ◽  
pp. 47-52 ◽  
Author(s):  
Agnès Lèbre ◽  
Michel Aurière ◽  
Nicolas Fabas ◽  
Denis Gillet ◽  
Eric Josselin ◽  
...  

AbstractFull Stokes spectropolarimetric observations of a Mira star (χ Cyg) and a RV Tauri star (R Sct) are presented and analyzed comparatively. From their Stokes V data (circular polarization), we report the detection of a weak magnetic field at the surface of these cool and evolved radially pulsating stars. For both stars, we analyse this detection in the framework of their complex atmospheric dynamics, with the possibility that shock waves may imprint an efficient compressive effect on the surface magnetic field. We also report strong Stokes U and Stokes Q signatures associated to metallic lines (as a global trend), those linear polarimetric features appear to be time variable along the pulsating phase. More surprising, in the Stokes U and Stokes Q data, we also detect signatures associated to individual metallic lines (such as Sr i 460.7 nm, Na D2588.9 nm), that are known (from the solar case) to be easily polarizable in case of a global asymmetry at the photospheric level.



2013 ◽  
Vol 9 (S302) ◽  
pp. 385-388 ◽  
Author(s):  
Agnès Lèbre ◽  
Michel Aurière ◽  
Nicolas Fabas ◽  
Denis Gillet ◽  
Fabrice Herpin ◽  
...  

AbstractSo far, surface magnetic fields have never been reported on Mira stars, while observational facilities allowing detection and measurement of weak surface fields through the Zeeman effect have become available. Then, in order to complete the knowledge of the magnetic field and of its influence during the transition from Asymptotic Giant Branch (AGB) to Planetary Nebulae (PN) stages, we have undertaken a search for magnetic fields at the surface of Miras. We present the first spectropolarimetric observations (performed with the Narval instrument at Télescope Bernard Lyot-TBL, Pic du Midi, France) of the S-type Mira star χ Cyg. We have detected a polarimetric signal in the Stokes V spectra and we have established its Zeeman origin. We claim that it is likely to be related to a weak magnetic field present at the photospheric level and in the lower part of the stellar atmosphere. The origin of this magnetic field is discussed in the framework of shock waves periodically propagating throughout the atmosphere of a Mira.



2008 ◽  
Vol 4 (S257) ◽  
pp. 601-603
Author(s):  
O. S. Yakovchouk ◽  
I. S. Veselovsky ◽  
K. Mursula ◽  
Yu. S. Shugai

AbstractThe numerical method developed by Veselovsky & Ivanov (2006), together with magnetograms of the Sun obtained at the photospheric level were used to calculate the coronal magnetic field with open, closed and intermittent topology during March-December 2007. The results of the modelling are compared with stereoscopic images and movies of the corona observed by EUV telescopes onboard STEREO and SOHO spacecraft. The sources of the permanent and transient high speed solar wind streams as well as the sector structure and the heliospheric plasma sheet observed at the Earth's orbit by the ACE and STEREO spacecraft are discussed.



2005 ◽  
Vol 435 (3) ◽  
pp. 1115-1122 ◽  
Author(s):  
V. Bommier ◽  
J. Rayrole ◽  
A. Eff-Darwich


Sign in / Sign up

Export Citation Format

Share Document