geocentric distance
Recently Published Documents


TOTAL DOCUMENTS

17
(FIVE YEARS 1)

H-INDEX

7
(FIVE YEARS 0)

2020 ◽  
Vol 6 (42) ◽  
pp. eabc0865
Author(s):  
James Green ◽  
David Draper ◽  
Scott Boardsen ◽  
Chuanfei Dong

Apollo lunar samples reveal that the Moon generated its own global magnetosphere, lasting from ~4.25 to ~2.5 billion years (Ga) ago. At peak lunar magnetic intensity (4 Ga ago), the Moon was volcanically active, likely generating a very tenuous atmosphere, and, it is believed, was at a geocentric distance of ~18 Earth radii (RE). Solar storms strip a planet’s atmosphere over time, and only a strong magnetosphere would be able to provide maximum protection. We present simplified magnetic dipole field modeling confined within a paraboloidal-shaped magnetopause to show how the expected Earth-Moon coupled magnetospheres provide a substantial buffer from the expected intense solar wind, reducing Earth’s atmospheric loss to space.


2015 ◽  
Vol 42 (2) ◽  
pp. 241-248 ◽  
Author(s):  
W. Li ◽  
L. Chen ◽  
J. Bortnik ◽  
R. M. Thorne ◽  
V. Angelopoulos ◽  
...  

2014 ◽  
Vol 7 (5) ◽  
pp. 6413-6437
Author(s):  
K. Konstantinidis ◽  
T. Sarris

Abstract. The integral invariant coordinate I and Roederer's L or L* are proxies for the second and third adiabatic invariants respectively, that characterize charged particle motion in a magnetic field. Their usefulness lies in the fact that they are expressed in more instructive ways than their counterparts: I is equivalent to the path length of the particle motion between two mirror points, whereas L*, although dimensionless, is roughly equivalent to the distance from the center of the Earth to the equatorial point of a given field line, in units of Earth radii, in the simplified case of a dipole magnetic field. However, care should be taken when calculating the above invariants, as the assumption of their adiabaticity is not valid everywhere in the Earth's magnetosphere. This is not clearly stated in state-of-the-art models that are widely used for the calculation of these invariants. In this paper, we compare the values of I and L* as calculated using LANLstar, an artificial neural network developed at the Los Alamos National Laboratory, SPENVIS, a space environment related online tool, IRBEM, a source code library dedicated to radiation belt modelling, and a 3-D particle tracing code that was developed for this purpose. We then attempt to quantify the variations between the calculations of I and L* of those models. The deviation between the results given by the models depends on particle starting position geocentric distance, pitch angle and magnetospheric conditions. Using the 3-D tracer we attempt to map the areas in the Earth's magnetosphere where I and L* can be assumed to be conserved by monitoring the constancy of I for energetic proton propagating forwards and backwards in time. These areas are found to be centered on the noon area and their size also depends on particle starting position geocentric distance, pitch angle and magnetospheric conditions.


2012 ◽  
Vol 20 (5) ◽  
pp. 1126-1133
Author(s):  
李伟雄 LI Wei-xiong ◽  
闫得杰 YAN De-jie ◽  
徐抒岩 XU Shu-yan ◽  
胡君 Hu Jun

2009 ◽  
Vol 27 (11) ◽  
pp. 4317-4332 ◽  
Author(s):  
A. Keiling ◽  
V. Angelopoulos ◽  
J. M. Weygand ◽  
O. Amm ◽  
E. Spanswick ◽  
...  

Abstract. A simultaneous observation of an auroral spiral and its generator region in the near-Earth plasma sheet is rather unlikely. Here we present such observations using the THEMIS spacecraft as well as the THEMIS ground network of all-sky imagers and magnetometers. Two consecutive auroral spirals separated by approximately 14 min occurred during a substorm on 19 February 2008. The spirals formed during the expansion phase and a subsequent intensification, and were among the brightest features in the aurora with diameters of 200–300 km. The duration for the formation and decay of each spiral was less than 60 s. Both spirals occurred shortly after the formation of two oppositely rotating plasma flow vortices in space, which were also accompanied by dipolarizations and ion injections, at ~11 RE geocentric distance. Observations and model calculations also give evidence for a magnetic-field-aligned current generation of approximately 0.1 MA via the flow vortices, connecting the generator region of the spirals with the ionosphere, during the formation of both spirals. In the ionosphere, a pair of equivalent ionospheric current (EIC) vortices with opposite rotations (corresponding to upward and downward currents) was present during both auroral spirals with enhanced EICs and ionospheric flows at the locations of the auroral spirals and along the auroral arcs. The combined ground and space observations suggest that each auroral spiral was powered by two oppositely rotating plasma flow vortices that caused a current enhancement in the substorm current wedge.


2009 ◽  
Vol 5 (S263) ◽  
pp. 289-292
Author(s):  
Kh. I. Ibadinov ◽  
A. M. Buriev ◽  
A. G. Safarov

AbstractThe most dramatic display of variable activity of a comet is splitting of the nucleus. For the purpose of revealing the trends of splitting of comet nuclei and of formation of abnormal cometary tails, we have created two catalogues of comets: a catalogue of split nuclei, containing 99 comets, and a catalogue of comets with abnormal tails, including 60 objects. Statistical investigation reveals some general trends of these phenomena. The greatest number of recorded cases of nucleus splitting and abnormal tail (60%) occurs within an interval of heliocentric distance ranging from 0.6 AU to 1.6 AU (maximum at 1.1 AU) and geocentric distance ranging from 0.6 AU to 1.8 AU (maximum at 1.15 AU). Splitting of nuclei and abnormal tails are more often (75%) recorded close to the perihelia of the cometary orbits. Only 16% of splitting comets also exhibit abnormal tails. Some cases of nuclear splitting and large velocity (some km/s) eruptions of dust from a nucleus, as well as cases of abnormal tails developed at large heliocentric distances, may indicate collisions of comet nuclei with other bodies. Our results are of interest for the physics of comets, and for the distribution of meteoroids in solar system.


2009 ◽  
Vol 27 (7) ◽  
pp. 2947-2969 ◽  
Author(s):  
M. Yamauchi ◽  
I. Dandouras ◽  
P. W. Daly ◽  
G. Stenberg ◽  
H. U. Frey ◽  
...  

Abstract. In the evening equatorial magnetosphere at about 4 RE geocentric distance and 19 MLT, the four Cluster spacecraft observed a solitary structure with a width of about 1000~2000 km in the propagation direction. The solitary structure propagates sunward with about 5~10 km/s carrying sunward electric field (in the propagation direction) of up to about 10 mV/m (total potential drop of about 5~10 kV), depletion of magnetic field of about 25%, and a duskward E×B convection up to 50 km/s of He+ rich cold plasma without O+. At the same time, auroral images from the IMAGE satellite together with ground based geomagnetic field data showed a westward (sunward at this location) propagating auroral bulge at the magnetically conjugate ionosphere with the solitary structure. The solitary structure is maintained by flux enhancement of selectively 3000 km/s ions (about 50 keV for H+, 200 keV for He+, and 750 keV for O+). These ions are the main carrier of the diamagnetic current causing the magnetic depletion, whereas the polarization is maintained by different behavior of energetic ions and electrons. Corresponding to aurora, field-aligned accelerated ionospheric plasma of several keV appeared at Cluster from both hemispheres simultaneously. Together with good correspondence in location and propagation velocity between the auroral bulge and the solitary structure, this indicates that the sunward moving auroral bulge is caused by the sunward propagation of the solitary structure which is maintained by energetic ions. The solitary structure might also be the cause of Pi2-like magnetic variation that started simultaneously at Cluster location.


2007 ◽  
Vol 25 (11) ◽  
pp. 2413-2425 ◽  
Author(s):  
T. Johansson ◽  
G. Marklund ◽  
T. Karlsson ◽  
S. Liléo ◽  
P.-A. Lindqvist ◽  
...  

Abstract. The scale sizes of intense (>0.15 V/m, mapped to the ionosphere), high-altitude (4–7 RE geocentric distance) auroral electric fields (measured by the Cluster EFW instrument) have been determined in a statistical study. Monopolar and bipolar electric fields, and converging and diverging events, are separated. The relations between the scale size, the intensity and the potential variation are investigated. The electric field scale sizes are further compared with the scale sizes and widths of the associated field-aligned currents (FACs). The influence of, or relation between, other parameters (proton gyroradius, plasma density gradients, and geomagnetic activity), and the electric field scale sizes are considered. The median scale sizes of these auroral electric field structures are found to be similar to the median scale sizes of the associated FACs and the density gradients (all in the range 4.2–4.9 km) but not to the median proton gyroradius or the proton inertial scale length at these times and locations (22–30 km). (The scales are mapped to the ionospheric altitude for reference.) The electric field scale sizes during summer months and high geomagnetic activity (Kp>3) are typically 2–3 km, smaller than the typical 4–5 km scale sizes during winter months and low geomagnetic activity (Kp≤3), indicating a dependence on ionospheric conductivity.


2005 ◽  
Vol 23 (7) ◽  
pp. 2579-2588 ◽  
Author(s):  
T. Johansson ◽  
T. Karlsson ◽  
G. Marklund ◽  
S. Figueiredo ◽  
P.-A. Lindqvist ◽  
...  

Abstract. Intense high-latitude electric fields (>150 mV/m mapped to ionospheric altitude) at 4–7 RE geocentric distance have been investigated in a statistical study, using data from the Cluster satellites. The orbit of the Cluster satellites limits the data collection at these altitudes to high latitudes, including the poleward part of the auroral oval. The occurrence and distribution of the selected events have been used to characterize the intense electric fields and to investigate their dependance on parameters such as MLT, CGLat, altitude, and also Kp. Peaks in the local time distribution are found in the evening to morning sectors but also in the noon sector, corresponding to cusp events. The electric field intensities decrease with increasing latitude in the region investigated (above 60 CGLat). A dependence on geomagnetic activity is indicated since the probability of finding an event increases up to Kp=5–6. The scales sizes are in the range up to 10 km (mapped to ionospheric altitude) with a maximum around 4–5km, consistent with earlier findings at lower altitudes and Cluster event studies. The magnitudes of the electric fields are inversely proportional to the scale sizes. The type of electric field structure (convergent or divergent) is consistent with the FAC direction for a subset of events with electric field intensities in the range 500–1000 mV/m and with clear bipolar signatures. The FAC directions are also consistent with the Region 1 and NBZ current systems, the latter of which prevail only during northward IMF conditions. For scale sizes less than 2 km the majority of the events were divergent electric field structures. Both converging and diverging electric fields were found throughout the investigated altitude range (4–7 RE geocentric distance). Keywords. Magnetospheric physics (Electric fields; Auroral phenomena; Magnetosphere-ionosphere interactions)


2005 ◽  
Vol 23 (5) ◽  
pp. 1909-1916 ◽  
Author(s):  
S. Arvelius ◽  
M. Yamauchi ◽  
H. Nilsson ◽  
R. Lundin ◽  
Y. Hobara ◽  
...  

Abstract. The persistent outflows of O+ ions observed by the Cluster CIS/CODIF instrument were studied statistically in the high-altitude (from 3 up to 11 RE) and high-latitude (from 70 to ~90 deg invariant latitude, ILAT) polar region. The principal results are: (1) Outflowing O+ ions with more than 1keV are observed above 10 RE geocentric distance and above 85deg ILAT location; (2) at 6-8 RE geocentric distance, the latitudinal distribution of O+ ion outflow is consistent with velocity filter dispersion from a source equatorward and below the spacecraft (e.g. the cusp/cleft); (3) however, at 8-12 RE geocentric distance the distribution of O+ outflows cannot be explained by velocity filter only. The results suggest that additional energization or acceleration processes for outflowing O+ ions occur at high altitudes and high latitudes in the dayside polar region. Keywords. Magnetospheric physics (Magnetospheric configuration and dynamics, Solar wind-magnetosphere interactions)


Sign in / Sign up

Export Citation Format

Share Document