viscous instability
Recently Published Documents


TOTAL DOCUMENTS

50
(FIVE YEARS 9)

H-INDEX

12
(FIVE YEARS 2)

2021 ◽  
Vol 2119 (1) ◽  
pp. 012048
Author(s):  
V V Kuznetsov ◽  
S A Safonov

Abstract This paper presents the results of numerical study of the relationship between micro-and macroscale flows during immiscible displacement in a two-layer porous medium. A feature of the proposed approach is the allowance for large-scale capillarity induced flow due to curvature of the displacement front in macro-inhomogeneous porous medium. The physical mechanisms determining the development of viscous instability in a layer-inhomogeneous porous medium are considered, the methods for suppressing viscous fingers formation based on the stabilization of the displacement front due the action of capillary forces are proposed.


2020 ◽  
Vol 498 (3) ◽  
pp. 3429-3439 ◽  
Author(s):  
A J Goodwin ◽  
D M Russell ◽  
D K Galloway ◽  
M C Baglio ◽  
A S Parikh ◽  
...  

ABSTRACT X-ray transients, such as accreting neutron stars, periodically undergo outbursts, thought to be caused by a thermal-viscous instability in the accretion disc. Usually outbursts of accreting neutron stars are identified when the accretion disc has undergone an instability, and the persistent X-ray flux has risen to a threshold detectable by all sky monitors on X-ray space observatories. Here, we present the earliest known combined optical, UV, and X-ray monitoring observations of the outburst onset of an accreting neutron star low-mass X-ray binary (LMXB) system. We observed a significant, continuing increase in the optical i′-band magnitude starting on July 25, 12 d before the first X-ray detection with Swift/XRT and NICER (August 6), during the onset of the 2019 outburst of SAX J1808.4−3658. We also observed a 4 d optical to X-ray rise delay, and a 2 d UV to X-ray delay, at the onset of the outburst. We present the multiwavelength observations that were obtained, discussing the theory of outbursts in X-ray transients, including the disc instability model, and the implications of the delay. This work is an important confirmation of the delay in optical to X-ray emission during the onset of outbursts in LMXBs, which has only previously been measured with less sensitive all sky monitors. We find observational evidence that the outburst is triggered by ionization of hydrogen in the disc.


2020 ◽  
Vol 494 (1) ◽  
pp. 1395-1410 ◽  
Author(s):  
V V Zhuravlev

ABSTRACT Damping of the previously discovered resonant drag instability (RDI) of dust streaming in the protoplanetary disc is studied using the local approach to dynamics of gas–dust perturbations in the limit of the small dust fraction. Turbulence in a disc is represented by the effective viscosity and diffusivity in equations of motion for gas and dust, respectively. In the standard case of the Schmidt number (ratio of the effective viscosity to diffusivity) Sc = 1, the reduced description of RDI in terms of the inertial wave (IW) and the streaming dust wave (SDW) falling in resonance with each other reveals that damping solution differs from the inviscid solution simply by adding the characteristic damping frequency to its growth rate. RDI is fully suppressed at the threshold viscosity, which is estimated analytically, first, for radial drift, next, for vertical settling of dust, and at last, in the case of settling combined with a radial drift of the dust. In the last case, RDI survives up to the highest threshold viscosity, with a greater excess for smaller solids. Once Sc ≠ 1, a new instability specific for dissipative perturbations on the dust settling background emerges. This instability of the quasi-resonant nature is referred to as settling viscous instability (SVI). The mode akin to SDW (IW) becomes growing in a region of long waves provided that Sc > 1 (Sc < 1). SVI leads to an additional increase in the threshold viscosity.


Author(s):  
Mariko Kimura ◽  
Yoji Osaki ◽  
Taichi Kato ◽  
Shin Mineshige

Abstract IW And stars are a subgroup of dwarf novae characterized by repetition of the intermediate brightness state with oscillatory variations terminated by brightening. This group of dwarf novae is also known to exhibit a wide variety even within one system in long-term light curves, including the usual dwarf-nova outbursts, Z Cam-type standstills, and so on, besides the typical IW And-type variations mentioned above. Following recent observations suggesting that some IW And stars seem to have tilted disks, we have investigated how the thermal-viscous instability works in tilted accretion disks in dwarf novae and whether it could reproduce the essential features of the light curves in IW And stars. By adopting various simplifying assumptions for tilted disks, we have performed time-dependent one-dimensional numerical simulations of a viscous disk by taking into account various mass supply patterns to the disk; that is, the gas stream from the secondary star flows not only to the outer edge of the disk but also to the inner portions of the disk. We find that tilted disks can achieve a new kind of accretion cycle, in which the inner disk almost always stays in the hot state while the outer disk repeats outbursts, thereby reproducing alternating mid-brightness intervals with dips and brightening, which are quite reminiscent of the most characteristic observational light variations of IW And stars. Further, we have found that our simulations produce diverse light variations, depending on different mass supply patterns even without time variations in mass transfer rates. This could explain the wide variety in long-term light curves of IW And stars.


Author(s):  
Vojtěch Šimon

Abstract KV UMa (XTE J1118+480) is an X-ray binary that is known to undergo outbursts in 2000 and 2005. This paper presents the discovery of a large outburst starting in 1927 on the archival photographic plates and an analysis of the long-term optical activity of this system. We used the photographic data from DASCH (Digital Access to a Sky Century @ Harvard). We placed the 1927 outburst in the context of the observed outbursts of KV UMa. We show that it is a double event, with a precursor similar to the one of the outbursts in 2000. We find a big difference between the 1927 and 2000 outbursts as regards the length of the gap between the precursor and the main outburst. It is more than 250 d in 1927, whereas it is about 20 d in 2000, although the brightnesses of all peaks are mutually comparable. We also show that the individual optical outbursts of KV UMa differ from each other by the duration of the stage of a slow decline of brightness (sometimes roughly a plateau). This determines the length of the entire main outburst. Both the peak magnitude and the brightness of the outburst when the slow decline transitions to a steep final decaying branch plausibly reproduce in all three outbursts. In the interpretation, the short duration of the precursor is caused by the fact that only the thermal-viscous instability operated in the accretion disk while also the tidal instability of the disk contributed in the subsequent main outburst.


2019 ◽  
Vol 632 ◽  
pp. A40 ◽  
Author(s):  
Guillaume Dubus ◽  
Chris Done ◽  
Bailey E. Tetarenko ◽  
Jean-Marie Hameury

Context. The observed signatures of winds from X-ray binaries are broadly consistent with thermal winds, which are driven by X-ray irradiation of the outer accretion disc. Thermal winds produce mass outflow rates that can exceed the accretion rate in the disc. Aims. We aim to study the impact of thermal wind mass loss on the stability and lightcurves of black hole X-ray binaries subject to the thermal-viscous instability driving their outbursts. Strong mass loss could stop outbursts early, as proposed for the 2015 outburst of V404 Cyg. Methods. We used an analytical model for thermal (Compton) wind mass loss as a function of radius, X-ray spectrum, and luminosity that was calibrated against numerical simulations. We also estimated the fraction of the X-rays, emitted close to the compact object, that are scattered back to the outer disc in the wind. Scattering in the thermal wind couples irradiation to the disc size and inner mass accretion rate. The disc evolution equations were modified to include this wind mass loss and the varying irradiation fraction. Results. Scattering in the strong wind expected of long Porb systems enhances the irradiation heating of the outer disc, keeping it stable against the thermal-viscous instability. This accounts very well for the existence of persistently bright systems with large discs, such as Cyg X-2, 1E 1740.7−2942, or GRS 1758−258. Mass loss from the thermal wind shortens the outburst, as expected, but it is insufficient in explaining the rapid decay timescale of black-hole X-ray binary outbursts. However, including the wind-related varying irradiation fraction produces lightcurves with plateaus in long Porb systems like GRO J1655−40. Plateau lightcurves may be a dynamical signature of enhanced irradiation due to scattering in thermal winds. Conclusions. Mass loss due to thermal winds is not a major driver for the outburst dynamics up to luminosities of 0.1 − 0.2 LEdd. Higher luminosities may produce stronger mass loss but studying them is complicated since the wind becomes opaque. Magnetic winds, which extract angular momentum with little mass loss, seem more promising to explain the fast decay timescales generically seen in black-hole X-ray binaries. Thermal winds can play an important role in the outburst dynamics through the varying irradiation heating. This may be evidenced by relating changes in wind properties, X-ray spectra, or luminosity with changes in the optical emission that traces the outer disc. Simulations should enable more accurate estimates of the dependence of the irradiation onto the disc as a function of irradiation spectrum, radius, and disc wind properties.


2018 ◽  
Vol 620 ◽  
pp. A49 ◽  
Author(s):  
N. Scepi ◽  
G. Lesur ◽  
G. Dubus ◽  
M. Flock

Dwarf novae (DNe) are accreting white dwarfs that show eruptions caused by a thermal-viscous instability in the accretion disk. The outburst timescales constrain α, the ratio of the viscous stress to the thermal pressure, which phenomenologically connects to the mechanism of angular momentum transport. The eruptive state has α  ≈  0.1 while the quiescent state has α  ≈  0.03. Turbulent transport that is due to the magneto-rotational instability (MRI) is generally considered to be the source of angular momentum transport in DNe. The presence of a large-scale poloidal field threading the disk is known to enhance MRI-driven transport. Here, we perform 3D local magnetohydrodynamic (MHD) shearing-box simulations including vertical stratification, radiative transfer, and a net constant vertical magnetic flux to investigate how transport changes between the outburst and quiescent states of DNe. We find that a net vertical constant magnetic field, as could be provided by the white dwarf or by its stellar companion, provides a higher α in quiescence than in outburst, in opposition to what is expected. Including resistivity quenches MRI turbulence in quiescence, suppressing transport, unless the magnetic field is high enough, which again leads to α  ≈  0.1. A major difference between simulations with a net poloidal flux and simulations without a net flux is that angular momentum transport in the former is shared between turbulent radial transport and wind-driven vertical transport. We find that wind-driven transport dominates in quiescence even for moderately low magnetic fields ∼1 G. This can have a great impact on observational signatures since wind-driven transport does not heat the disk. Furthermore, wind transport cannot be reduced to an α prescription. We provide fits to the dependence of α with β, the ratio of thermal to magnetic pressure, and Teff, the effective temperature of the disk, as well as a prescription for the wind torque as a function of β that is in agreement with both local and global simulations. We conclude that the evolution of the thermal-viscous instability, and its consequences on the outburst cycles of CVs, needs to be thoroughly revised to take into account that most of the accretion energy may be carried away by a wind instead of being locally dissipated.


Sign in / Sign up

Export Citation Format

Share Document