scholarly journals Multi-scale flow patterns during immiscible displacement of oil by water in a layer-inhomogeneous porous media

2021 ◽  
Vol 2119 (1) ◽  
pp. 012048
Author(s):  
V V Kuznetsov ◽  
S A Safonov

Abstract This paper presents the results of numerical study of the relationship between micro-and macroscale flows during immiscible displacement in a two-layer porous medium. A feature of the proposed approach is the allowance for large-scale capillarity induced flow due to curvature of the displacement front in macro-inhomogeneous porous medium. The physical mechanisms determining the development of viscous instability in a layer-inhomogeneous porous medium are considered, the methods for suppressing viscous fingers formation based on the stabilization of the displacement front due the action of capillary forces are proposed.

1981 ◽  
Vol 59 (1) ◽  
pp. 45-56 ◽  
Author(s):  
T. J. T. Spanos

A statistical theory for the construction of the equations of viscous displacement in a porous medium is considered. This yields a continuum theory for immiscible displacement which can be applied to either a homogeneous or inhomogeneous porous medium. The relative motions of the fluid are considered in terms of the motion of surfaces of constant saturation which are smoothed surfaces at the macroscopic scale considered. The boundary conditions and initial conditions at the injection boundary are considered as well as the boundary conditions and breakthrough conditions at the recovery boundary and the side boundary conditions. The inertial terms are included in the equations and shown to be of importance in describing these initial conditions and the breakthrough conditions.


1981 ◽  
Vol 59 (5) ◽  
pp. 678-687 ◽  
Author(s):  
T. J. T. Spanos

A perturbation of an immiscible displacement process causes relative motion of the two fluids involved. At the macroscopic scale such relative motions are considered to propagate throughout the porous medium in the form of fluid waves. A description of these waves is given on surfaces of constant saturation in a similar fashion to the description of a surface wave propagating on the interface between two fluids. In the porous medium, however, the wave propagation is not restricted to the surface of constant saturation and as a result one obtains a wave equation that is both dissipative and diffusive.A stability analysis is also considered for the immiscible displacement process. Here, a characteristic time for instability to occur can be calculated when the inertial terms are included in the equations of motion. Also a generalization of the wave equations and stability criteria are considered for an inhomogeneous porous medium.


Author(s):  
Izmail Kantarzhi ◽  
Sergii Kivva ◽  
Natalia V Shunko

The numerical model of wave surface elevation and water filtration in the saturated-unsaturated porous medium is developed. The model uses to define the parameters of the wave run-up at the slope protected by the permeable fixed layer. The model shows the wave surface in the different times, including the wave run-up height at the slope and wave run-down. Also, the velocities in the upper protected layer as well in the soil body of the slope are defined. Model is verified with using of the published large-scale tests with the slopes protected by Elastocoast technology layers. The tests were carried out in the wave flume of Technical University Braunschweig. The numerical model may be applied to calculate the maximal waves run-up at the protected engineering and beach slopes in natural conditions.


2017 ◽  
Vol 20 (5) ◽  
pp. 417-433 ◽  
Author(s):  
Ali Salehi-Shabestari ◽  
Mehrdad Raisee ◽  
Kayvan Sadeghy

2019 ◽  
Vol 8 (3) ◽  
pp. 5795-5802 ◽  

The main objective of this paper is to focus on a numerical study of viscous dissipation effect on the steady state flow of MHD Williamson nanofluid. A mathematical modeled which resembles the physical flow problem has been developed. By using an appropriate transformation, we converted the system of dimensional PDEs (nonlinear) into coupled dimensionless ODEs. The numerical solution of these modeled ordinary differential equations (ODEs) is achieved by utilizing shooting technique together with Adams-Bashforth Moulton method of order four. Finally, the results of discussed for different parameters through graphs and tables.


2002 ◽  
pp. 337-378 ◽  
Author(s):  
Jozef Telega ◽  
Wlodzimierz Bielski

The aim of this contribution is mainly twofold. First, the stochastic two-scale convergence in the mean developed by Bourgeat et al. [13] is used to derive the macroscopic models of: (i) diffusion in random porous medium, (ii) nonstationary flow of Stokesian fluid through random linear elastic porous medium. Second, the multi-scale convergence method developed by Allaire and Briane [7] for the case of several microperiodic scales is extended to random distribution of heterogeneities characterized by separated scales (stochastic reiterated homogenization). .


2020 ◽  
Vol 12 (20) ◽  
pp. 8369
Author(s):  
Mohammad Rahimi

In this Opinion, the importance of public awareness to design solutions to mitigate climate change issues is highlighted. A large-scale acknowledgment of the climate change consequences has great potential to build social momentum. Momentum, in turn, builds motivation and demand, which can be leveraged to develop a multi-scale strategy to tackle the issue. The pursuit of public awareness is a valuable addition to the scientific approach to addressing climate change issues. The Opinion is concluded by providing strategies on how to effectively raise public awareness on climate change-related topics through an integrated, well-connected network of mavens (e.g., scientists) and connectors (e.g., social media influencers).


Sign in / Sign up

Export Citation Format

Share Document