lignocellulose hydrolysate
Recently Published Documents


TOTAL DOCUMENTS

30
(FIVE YEARS 16)

H-INDEX

8
(FIVE YEARS 3)

Author(s):  
Giselle C. Martin-Hernandez ◽  
Bettina Müller ◽  
Christian Brandt ◽  
Martin Hölzer ◽  
Adrian Viehweger ◽  
...  

The genus Rhodotorula includes basidiomycetous oleaginous yeast species. R. babjevae can produce compounds of biotechnological interest such as lipids, carotenoids and biosurfactants from low value substrates such as lignocellulose hydrolysate. High-quality genome assemblies are needed to develop genetic tools and to understand fungal evolution and genetics. Here, we combined short- and long-read sequencing to resolve the genomes of two R. babjevae strains, CBS 7808 (type strain) and DBVPG 8058 at chromosomal level. Both genomes have a size of 21 Mbp and a GC content of 68.2%. Allele frequency analysis indicated tetraploidy in both strains. They harbor 21 putative chromosomes with sizes ranging from 0.4 to 2.4 Mb. In both assemblies, the mitochondrial genome was recovered in a single contig, which shared 97% pairwise identity. The pairwise identity between the majority of chromosomes ranges from 82% to 87%. We found indications for strain-specific extrachromosomal endogenous DNA. 7,591 protein-coding genes and 7,607 associated transcripts were annotated in CBS 7808 and 7,481 protein-coding genes and 7,516 associated transcripts in DBVPG 8058. CBS 7808 has accumulated a higher number of tandem duplications than DBVPG 8058. We identified large translocation events between putative chromosomes and a high genetic divergence between the two strains.


2021 ◽  
Vol 12 ◽  
Author(s):  
Dongsheng Hu ◽  
Zhiquan Wang ◽  
Mingxiong He ◽  
Yuanyuan Ma

Furfural is a major inhibitor in lignocellulose hydrolysate for Zymomonas mobilis. A mutant F211 strain with high furfural tolerance was obtained from our previous study. Thus, its key tolerance mechanism was studied in the present study. The function of mutated genes in F211 was identified by functional complementation experiments, revealing that the improved furfural tolerance was resulted from the C493T mutation of the ZCP4_0270 gene promoting cell flocculation and the mutation (G1075A)/downregulation of ZCP4_0970. Comparative transcriptome analysis revealed 139 differentially expressed genes between F211 and the control, CP4, in response to furfural stress. In addition, the reliability of the RNA-Seq data was also confirmed. The potential tolerance mechanism was further demonstrated by functional identification of tolerance genes as follows: (I) some upregulated or downregulated genes increase the levels of NAD(P)H, which is involved in the reduction of furfural to less toxic furfuryl alcohol, thus accelerating the detoxification of furfural; (II) the mutated ZCP4_0270 and upregulated cellulose synthetase gene (ZCP4_0241 and ZCP4_0242) increased flocculation to resist furfural stress; (III) upregulated molecular chaperone genes promote protein synthesis and repair stress-damaged proteins; and (IV) transporter genes ZCP4_1623–1,625 and ZCP4_1702–1703 were downregulated, saving energy for cell growth. The furfural-tolerant mechanism and corresponding functional genes were revealed, which provides a theoretical basis for developing robust chassis strains for synthetic biology efforts.


2021 ◽  
Author(s):  
Lingjie Zeng ◽  
Jinxiang Huang ◽  
Pixue Feng ◽  
Xuemei Zhao ◽  
Zaiyong Si ◽  
...  

Abstract Formic acid is a representative small molecule acid cell inhibitor in lignocellulosic hydrolysate, which can inhibit the growth of yeast cells in the process of alcohol fermentation. However, the mechanism of formic acid cytotoxicity remains largely unknown. This study aimed to study the cytotoxicity of formic acid stress to Saccharomyces cerevisiae. We evaluated the effects of formic acid on growth metabolism and cell morphology of yeast cells, and comprehensively and systematically analyzed the molecular mechanism of formic acid stress tolerance through transcriptome technology. The results showed that when the concentration of formic acid was 1.8 g/L, the growth of yeast cells was significantly inhibited, the cell surface was wrinkled, and the adhesion between cells was observed, and the cell wall and cell membrane of yeast were destroyed by changing the structure of proteins and carbohydrates, resulting in cell damage. Transcriptome sequencing results showed that formic acid stress inhibited protein biosynthesis, induced oxidative stress, resulted in autophagy, impaired intracellular ATP production and increased consumption, and then impaired normal physiological and metabolic functions of cells. Yeast cells provide sufficient ATP by accelerating glucose metabolism, enhancing electron transport and ATP synthesis more energy to resist formic acid stress, and reduce the expression of genes related to energy metabolism such as intracellular amino acids to achieve an energy-saving strategy, In addition, it can also induce sexual reproduction and spore formation to improve cell tolerance to formic acid. This study initially revealed the molecular response mechanism of S. cerevisiae under formic acid stress, and provided a scientific basis for further research on methods to improve the tolerance of cell inhibitors in lignocellulose hydrolysate.


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Jule Brandenburg ◽  
Johanna Blomqvist ◽  
Volha Shapaval ◽  
Achim Kohler ◽  
Sabine Sampels ◽  
...  

Abstract Background Microbial oils, generated from lignocellulosic material, have great potential as renewable and sustainable alternatives to fossil-based fuels and chemicals. By unravelling the diversity of lipid accumulation physiology in different oleaginous yeasts grown on the various carbon sources present in lignocellulose hydrolysate (LH), new targets for optimisation of lipid accumulation can be identified. Monitoring lipid formation over time is essential for understanding lipid accumulation physiology. This study investigated lipid accumulation in a variety of oleaginous ascomycetous and basidiomycetous strains grown in glucose and xylose and followed lipid formation kinetics of selected strains in wheat straw hydrolysate (WSH). Results Twenty-nine oleaginous yeast strains were tested for their ability to utilise glucose and xylose, the main sugars present in WSH. Evaluation of sugar consumption and lipid accumulation revealed marked differences in xylose utilisation capacity between the yeast strains, even between those belonging to the same species. Five different promising strains, belonging to the species Lipomyces starkeyi, Rhodotorula glutinis, Rhodotorula babjevae and Rhodotorula toruloides, were grown on undiluted wheat straw hydrolysate and lipid accumulation was followed over time, using Fourier transform-infrared (FTIR) spectroscopy. All five strains were able to grow on undiluted WSH and to accumulate lipids, but to different extents and with different productivities. R. babjevae DVBPG 8058 was the best-performing strain, accumulating 64.8% of cell dry weight (CDW) as lipids. It reached a culture density of 28 g/L CDW in batch cultivation, resulting in a lipid content of 18.1 g/L and yield of 0.24 g lipids per g carbon source. This strain formed lipids from the major carbon sources in hydrolysate, glucose, acetate and xylose. R. glutinis CBS 2367 also consumed these carbon sources, but when assimilating xylose it consumed intracellular lipids simultaneously. Rhodotorula strains contained a higher proportion of polyunsaturated fatty acids than the two tested Lipomyces starkeyi strains. Conclusions There is considerable metabolic diversity among oleaginous yeasts, even between closely related species and strains, especially when converting xylose to biomass and lipids. Monitoring the kinetics of lipid accumulation and identifying the molecular basis of this diversity are keys to selecting suitable strains for high lipid production from lignocellulose.


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Friederike Gutmann ◽  
Cosimo Jann ◽  
Filipa Pereira ◽  
Andreas Johansson ◽  
Lars M. Steinmetz ◽  
...  

Abstract Background Baker’s yeast is a widely used eukaryotic cell factory, producing a diverse range of compounds including biofuels and fine chemicals. The use of lignocellulose as feedstock offers the opportunity to run these processes in an environmentally sustainable way. However, the required hydrolysis pretreatment of lignocellulosic material releases toxic compounds that hamper yeast growth and consequently productivity. Results Here, we employ CRISPR interference in S. cerevisiae to identify genes modulating fermentative growth in plant hydrolysate and in presence of lignocellulosic toxins. We find that at least one-third of hydrolysate-associated gene functions are explained by effects of known toxic compounds, such as the decreased growth of YAP1 or HAA1, or increased growth of DOT6 knock-down strains in hydrolysate. Conclusion Our study confirms previously known genetic elements and uncovers new targets towards designing more robust yeast strains for the utilization of lignocellulose hydrolysate as sustainable feedstock, and, more broadly, paves the way for applying CRISPRi screens to improve industrial fermentation processes.


2021 ◽  
Author(s):  
Junyang Wang ◽  
Zilong Li ◽  
Weishan Wang ◽  
Shen Pang ◽  
Fengxian Qi ◽  
...  

Abstract The efficient utilization of both glucose and xylose, the two most abundant sugars in biomass hydrolysates, is one of the main objectives of biofermentation with lignocellulosic materials. The utilization of xylose is commonly inhibited by glucose, which is known as glucose catabolite repression (GCR). Here we report a GCR-based dynamic control (GCR-DC) strategy aiming at a better co-utilization of glucose and xylose, by decoupling the cell growth and biosynthesis of riboflavin as a product. Using the thermophilic strain Geobacillus thermoglucosidasius DSM2542 as a host, we constructed extra riboflavin biosynthetic pathways that were activated by xylose but not glucose. The engineered strains showed a two-stage fermentation process. In the first stage, glucose was preferentially used for cell growth and no production of riboflavin was observed, while in the second stage where glucose was nearly depleted, xylose was effectively utilized for riboflavin biosynthesis. Using the corn cob hydrolysate as a carbon source, the optimized riboflavin yields of strains DSM2542-DCall-MSS (full pathway dynamic control strategy) and DSM2542-DCrib (single module dynamic control strategy) were 5.26 and 2.26 folds higher than that of the control strain DSM2542 Rib-Gtg constitutively producing riboflavin, respectively. This GCR-DC strategy should also be applicable to the construction of cell factories that can efficiently use natural carbon sources with multiple sugar components for the production of high-value chemicals in future.


2020 ◽  
Vol 227 ◽  
pp. 115933
Author(s):  
Chen-Guang Liu ◽  
Lian-Ying Cao ◽  
Yuan Wen ◽  
Kai Li ◽  
Muhammad Aamer Mehmood ◽  
...  

2020 ◽  
Author(s):  
Ge Gao ◽  
Yan Zhang ◽  
Ying Zhou ◽  
Bang-Ce Ye

Abstract Background: L-ornithine is a basic amino acid, which shows significant value in food and medicine industries. Xylose is the most important alternative carbon source of glucose in lignocellulosic hydrolysate. It is urgent to develop a high-efficiency cell factory for L-ornithine production with glucose and xylose.Results: In this study, the genes enconding xylose isomerase and xylulose kinase were introduced into Corynebacterium glutamicum S9114 to establish xylose metabolism pathway, and then xylose became a substitute carbon source of glucose. In addition, the optimization and overexpression of phosphoenolpyruvate carboxylase and pentose transporter had been conducted to promote the synthesis of L-ornithine for the first time. Furthermore, though optimizing the concentration ratio of glucose and xylose (7:3), adding biotin and thiamine hydrochloride, we arrived at the highest L-ornithine yield 41.5g/L in shaking flask fermentation so far.Conclusions: Our results demonstrate that the combination of metabolic engineering and the optimization of fermentation process can make great potential for L-ornithine production by lignocellulose hydrolysate.


2020 ◽  
Author(s):  
Friederike Gutmann ◽  
Cosimo Jann ◽  
Filipa Pereira ◽  
Andreas Johansson ◽  
Lars M. Steinmetz ◽  
...  

AbstractBackgroundBaker’s yeast is a widely used eukaryotic cell factory, producing a diverse range of compounds including biofuels and fine chemicals. The use of lignocellulose as feedstock offers the opportunity to run these processes in an environmentally sustainable way. However, the required hydrolysis pretreatment of lignocellulosic material releases toxic compounds that hamper yeast growth and consequently productivity.ResultsHere, we employ CRISPR interference in S. cerevisiae to identify genes modulating fermentative growth in plant hydrolysate and in presence of lignocellulosic toxins. We find that at least one third of hydrolysate-associated gene functions are explained by effects of known toxic compounds, such as the decreased growth of YAP1 or HAA1, or increased growth of DOT6 knock-down strains in hydrolysate.ConclusionOur study confirms previously known genetic elements and uncovers new targets towards designing more robust yeast strains for the utilization of lignocellulose hydrolysate as sustainable feedstock, and, more broadly, paves the way for applying CRISPRi screens to improve industrial fermentation processes.


Sign in / Sign up

Export Citation Format

Share Document