fungal evolution
Recently Published Documents


TOTAL DOCUMENTS

36
(FIVE YEARS 14)

H-INDEX

14
(FIVE YEARS 5)

Biology ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 24
Author(s):  
Francesco Dal Grande ◽  
Véronique Jamilloux ◽  
Nathalie Choisne ◽  
Anjuli Calchera ◽  
Gregor Rolshausen ◽  
...  

Transposable elements (TEs) are an important source of genome plasticity across the tree of life. Drift and natural selection are important forces shaping TE distribution and accumulation. Fungi, with their multifaceted phenotypic diversity and relatively small genome size, are ideal models to study the role of TEs in genome evolution and their impact on the host’s ecological and life history traits. Here we present an account of all TEs found in a high-quality reference genome of the lichen-forming fungus Umbilicaria pustulata, a macrolichen species comprising two climatic ecotypes: Mediterranean and cold temperate. We trace the occurrence of the newly identified TEs in populations along three elevation gradients using a Pool-Seq approach to identify TE insertions of potential adaptive significance. We found that TEs cover 21.26% of the 32.9 Mbp genome, with LTR Gypsy and Copia clades being the most common TEs. We identified 28 insertions displaying consistent insertion frequency differences between the two host ecotypes across the elevation gradients. Most of the highly differentiated insertions were located near genes, indicating a putative function. This pioneering study of the content and climate niche-specific distribution of TEs in a lichen-forming fungus contributes to understanding the roles of TEs in fungal evolution.


Author(s):  
Giselle C. Martin-Hernandez ◽  
Bettina Müller ◽  
Christian Brandt ◽  
Martin Hölzer ◽  
Adrian Viehweger ◽  
...  

The genus Rhodotorula includes basidiomycetous oleaginous yeast species. R. babjevae can produce compounds of biotechnological interest such as lipids, carotenoids and biosurfactants from low value substrates such as lignocellulose hydrolysate. High-quality genome assemblies are needed to develop genetic tools and to understand fungal evolution and genetics. Here, we combined short- and long-read sequencing to resolve the genomes of two R. babjevae strains, CBS 7808 (type strain) and DBVPG 8058 at chromosomal level. Both genomes have a size of 21 Mbp and a GC content of 68.2%. Allele frequency analysis indicated tetraploidy in both strains. They harbor 21 putative chromosomes with sizes ranging from 0.4 to 2.4 Mb. In both assemblies, the mitochondrial genome was recovered in a single contig, which shared 97% pairwise identity. The pairwise identity between the majority of chromosomes ranges from 82% to 87%. We found indications for strain-specific extrachromosomal endogenous DNA. 7,591 protein-coding genes and 7,607 associated transcripts were annotated in CBS 7808 and 7,481 protein-coding genes and 7,516 associated transcripts in DBVPG 8058. CBS 7808 has accumulated a higher number of tandem duplications than DBVPG 8058. We identified large translocation events between putative chromosomes and a high genetic divergence between the two strains.


2021 ◽  
Author(s):  
Francesco Dal Grande ◽  
Veronique Jamilloux ◽  
Nathalie Choisne ◽  
Anjuli Calchera ◽  
Malte Petersen ◽  
...  

Background: Transposable elements (TEs) are an important source of genome plasticity across the tree of life. Accumulating evidence suggests that TEs may not be randomly distributed in the genome. Drift and natural selection are important forces shaping TE distribution and accumulation, acting directly on the TE element or indirectly on the host species. Fungi, with their multifaceted phenotypic diversity and relatively small genome size, are ideal models to study the role of TEs in genome evolution and their impact on the host's ecological and life history traits. Here we present an account of all TEs found in a high-quality reference genome of the lichen-forming fungus Umbilicaria pustulata, a macrolichen species comprising two climatic ecotypes: Mediterranean and cold-temperate. We trace the occurrence of the newly identified TEs in populations along three replicated elevation gradients using a Pool-Seq approach, to identify TE insertions of potential adaptive significance. Results: We found that TEs cover 21.26 % of the 32.9 Mbp genome, with LTR Gypsy and Copia clades being the most common TEs. Out of a total of 182 TE copies we identified 28 insertions displaying consistent insertion frequency differences between the two host ecotypes across the elevation gradients. Most of the highly differentiated insertions were located near genes, indicating a putative function. Conclusions: This pioneering study into the content and climate niche-specific distribution of TEs in a lichen-forming fungus contributes to understanding the roles of TEs in fungal evolution. Particularly, it may serve as a foundation for assessing the impact of TE dynamics on fungal adaptation to the abiotic environment, and the impact of TE activity on the evolution and maintenance of a symbiotic lifestyle.


F1000Research ◽  
2020 ◽  
Vol 9 ◽  
pp. 1060
Author(s):  
Sergio A. Muñoz-Gómez ◽  
Shannon N. Snyder ◽  
Samantha J. Montoya ◽  
Jeremy G. Wideman

Background: The mitochondrial protein import complexes arose early in eukaryogenesis. Most of the components of the protein import pathways predate the last eukaryotic common ancestor. For example, the carrier-insertase TIM22 complex comprises the widely conserved Tim22 channel core. However, the auxiliary components of fungal and animal TIM22 complexes are exceptions to this ancient conservation. Methods: Using comparative genomics and phylogenetic approaches, we identified precisely when each TIM22 accretion occurred. Results: In animals, we demonstrate that Tim29 and Tim10b arose early in the holozoan lineage. Tim29 predates the metazoan lineage being present in the animal sister lineages, choanoflagellate and filastereans, whereas the erroneously named Tim10b arose from a duplication of Tim9 at the base of metazoans. In fungi, we show that Tim54 has representatives present in every holomycotan lineage including microsporidians and fonticulids, whereas Tim18 and Tim12 appeared much later in fungal evolution. Specifically, Tim18 and Tim12 arose from duplications of Sdh3 and Tim10, respectively, early in the Saccharomycotina. Surprisingly, we show that Tim54 is distantly related to AGK suggesting that AGK and Tim54 are extremely divergent orthologues and the origin of AGK/Tim54 interaction with Tim22 predates the divergence of animals and fungi. Conclusions: We argue that the evolutionary history of the TIM22 complex is best understood as the neutral structural divergence of an otherwise strongly functionally conserved protein complex. This view suggests that many of the differences in structure/subunit composition of multi-protein complexes are non-adaptive. Instead, most of the phylogenetic variation of functionally conserved molecular machines, which have been under stable selective pressures for vast phylogenetic spans, such as the TIM22 complex, is most likely the outcome of the interplay of random genetic drift and mutation pressure.


Author(s):  
Elizabeth R Ballou ◽  
Atlanta G Cook ◽  
Edward W. J. Wallace

The RNase II family of 3'-5' exoribonucleases are present in all domains of life, and eukaryotic family members Dis3 and Dis3L2 play essential roles in RNA degradation. Ascomycete yeasts contain both Dis3 and inactive RNase II-like "pseudonucleases". These function as RNA-binding proteins that affect cell growth, cytokinesis, and fungal pathogenicity. Here, we show how these pseudonuclease homologs, including Saccharomyces cerevisiae Ssd1, are descended from active Dis3L2 enzymes. During fungal evolution, active site mutations in Dis3L2 homologs have arisen at least four times, in some cases following gene duplication. The N-terminal cold-shock domains and regulatory features are conserved across diverse dikarya and mucoromycota, suggesting that the non-nuclease function require this region. In the basidiomycete pathogenic yeast Cryptococcus neoformans, the single Ssd1/Dis3L2 homolog is required for cytokinesis from polyploid "titan" growth stages and yet retains an active site sequence signature. We propose that that a nuclease-independent function for Dis3L2 arose in an ancestral hyphae-forming fungus. This second function has been conserved across hundreds of millions of years, while the RNase activity was lost repeatedly in independent lineages.


Author(s):  
Miguel A. Naranjo‐Ortiz ◽  
Toni Gabaldón
Keyword(s):  

eLife ◽  
2020 ◽  
Vol 9 ◽  
Author(s):  
Courtney R Johnson ◽  
Marc G Steingesser ◽  
Andrew D Weems ◽  
Anum Khan ◽  
Amy Gladfelter ◽  
...  

Septin proteins evolved from ancestral GTPases and co-assemble into hetero-oligomers and cytoskeletal filaments. In Saccharomyces cerevisiae, five septins comprise two species of hetero-octamers, Cdc11/Shs1–Cdc12–Cdc3–Cdc10–Cdc10–Cdc3–Cdc12–Cdc11/Shs1. Slow GTPase activity by Cdc12 directs the choice of incorporation of Cdc11 vs Shs1, but many septins, including Cdc3, lack GTPase activity. We serendipitously discovered that guanidine hydrochloride rescues septin function in cdc10 mutants by promoting assembly of non-native Cdc11/Shs1–Cdc12–Cdc3–Cdc3–Cdc12–Cdc11/Shs1 hexamers. We provide evidence that in S. cerevisiae Cdc3 guanidinium occupies the site of a ‘missing’ Arg side chain found in other fungal species where (i) the Cdc3 subunit is an active GTPase and (ii) Cdc10-less hexamers natively co-exist with octamers. We propose that guanidinium reactivates a latent septin assembly pathway that was suppressed during fungal evolution in order to restrict assembly to octamers. Since homodimerization by a GTPase-active human septin also creates hexamers that exclude Cdc10-like central subunits, our new mechanistic insights likely apply throughout phylogeny.


2019 ◽  
Vol 94 (6) ◽  
pp. 2101-2137 ◽  
Author(s):  
Miguel A. Naranjo‐Ortiz ◽  
Toni Gabaldón
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document