fermentative growth
Recently Published Documents


TOTAL DOCUMENTS

70
(FIVE YEARS 9)

H-INDEX

27
(FIVE YEARS 1)

2021 ◽  
Author(s):  
Ayaka Takahashi ◽  
Hisaya Kojima ◽  
Miho Watanabe ◽  
Manabu Fukui

Abstract A novel mesophilic and neutrophilic sulfate-reducing bacterium, strain SF6T, was isolated from sediment of a brackish lake in Japan. Cells of strain SF6T were motile and rod-shaped with length of 1.2–2.5 μm and width of 0.6–0.9 μm. Growth was observed at 10–37°C with an optimum growth temperature of 28°C. The pH range for growth was 5.8–8.2 with an optimum pH of 7.0. The most predominant fatty acid was anteiso-C15 : 0. Under sulfate-reducing conditions, strain SF6T utilized formate, lactate, ethanol and glucose as growth substrate. Chemolithoautotrophic growth on H2 was also observed. Fermentative growth occurred on pyruvate. As electron acceptor, sulfate, sulfite, thiosulfate and nitrate supported heterotrophic growth of the strain. The complete genome of strain SF6T is composed of a circular chromosome with length of 3.8 Mbp and G + C content of 54 mol%. Analyses of the 16S rRNA gene and whole genome sequence indicated that strain SF6T belongs to the genus Pseudodesulfovibrio but distinct form all existing species in the genus. On the basis of its genomic and phenotypic properties, strain SF6T (= DSM111931T = NBRC 114895T) is proposed as the type strain of a new species, with name of Pseudodesulfovibrio sediminis sp. nov.


PLoS Genetics ◽  
2021 ◽  
Vol 17 (4) ◽  
pp. e1009521
Author(s):  
Kendra Reynaud ◽  
Molly Brothers ◽  
Michael Ly ◽  
Nicholas T. Ingolia

The RNA-binding protein Mrn1 in Saccharomyces cerevisiae targets over 300 messenger RNAs, including many involved in cell wall biogenesis. The impact of Mrn1 on these target transcripts is not known, however, nor is the cellular role for this regulation. We have shown that Mrn1 represses target mRNAs through the action of its disordered, asparagine-rich amino-terminus. Its endogenous targets include the paralogous SUN domain proteins Nca3 and Uth1, which affect mitochondrial and cell wall structure and function. While loss of MRN1 has no effect on fermentative growth, we found that mrn1Δ yeast adapt more quickly to respiratory conditions. These cells also have enlarged mitochondria in fermentative conditions, mediated in part by dysregulation of NCA3, and this may explain their faster switch to respiration. Our analyses indicated that Mrn1 acts as a hub for integrating cell wall integrity and mitochondrial biosynthesis in a carbon-source responsive manner.


PLoS ONE ◽  
2021 ◽  
Vol 16 (3) ◽  
pp. e0248513
Author(s):  
Joivier Vichi ◽  
Emmanuel Salazar ◽  
Verónica Jiménez Jacinto ◽  
Leticia Olvera Rodriguez ◽  
Ricardo Grande ◽  
...  

In spite of increased complexity in eukaryotes compared to prokaryotes, several basic metabolic and regulatory processes are conserved. Here we explored analogies in the eubacteria Escherichia coli and the unicellular fission yeast Schizosaccharomyces pombe transcriptomes under two carbon sources: 2% glucose; or a mix of 2% glycerol and 0.2% sodium acetate using the same growth media and growth phase. Overall, twelve RNA-seq libraries were constructed. A total of 593 and 860 genes were detected as differentially expressed for E. coli and S. pombe, respectively, with a log2 of the Fold Change ≥ 1 and False Discovery Rate ≤ 0.05. In aerobic glycolysis, most of the expressed genes were associated with cell proliferation in both organisms, including amino acid metabolism and glycolysis. In contrast in glycerol/acetate condition, genes related to flagellar assembly and membrane proteins were differentially expressed such as the general transcription factors fliA, flhD, flhC, and flagellum assembly genes were detected in E. coli, whereas in S. pombe genes for hexose transporters, integral membrane proteins, galactose metabolism, and ncRNAs related to cellular stress were overexpressed. In general, our study shows that a conserved "foraging behavior" response is observed in these eukaryotic and eubacterial organisms in gluconeogenic carbon sources.


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Friederike Gutmann ◽  
Cosimo Jann ◽  
Filipa Pereira ◽  
Andreas Johansson ◽  
Lars M. Steinmetz ◽  
...  

Abstract Background Baker’s yeast is a widely used eukaryotic cell factory, producing a diverse range of compounds including biofuels and fine chemicals. The use of lignocellulose as feedstock offers the opportunity to run these processes in an environmentally sustainable way. However, the required hydrolysis pretreatment of lignocellulosic material releases toxic compounds that hamper yeast growth and consequently productivity. Results Here, we employ CRISPR interference in S. cerevisiae to identify genes modulating fermentative growth in plant hydrolysate and in presence of lignocellulosic toxins. We find that at least one-third of hydrolysate-associated gene functions are explained by effects of known toxic compounds, such as the decreased growth of YAP1 or HAA1, or increased growth of DOT6 knock-down strains in hydrolysate. Conclusion Our study confirms previously known genetic elements and uncovers new targets towards designing more robust yeast strains for the utilization of lignocellulose hydrolysate as sustainable feedstock, and, more broadly, paves the way for applying CRISPRi screens to improve industrial fermentation processes.


Author(s):  
Akio Ueno ◽  
Satoshi Tamazawa ◽  
Shuji Tamamura ◽  
Takuma Murakami ◽  
Tamotsu Kiyama ◽  
...  

A novel mesophilic sulfate-reducing bacterium, strain HN2T, was isolated from groundwater sampled from the subsurface siliceous mudstone of the Wakkanai Formation located in Horonobe, Hokkaido, Japan. The bacterium was Gram-negative and vibrio-shaped, and its motility was conferred by a single polar flagellum. Cells had desulfoviridin. Catalase and oxidase activities were not detected. It grew in the temperature range of 25–40 °C (optimum, 35 °C) and pH range of 6.3–8.1 (optimum, pH 7.2–7.6). It used sulfate, thiosulfate, dimethyl sulfoxide, anthraquinone-2,6-disulfonate, Fe3+, and manganese oxide, but not elemental sulfur, nitrite, nitrate, or fumarate as electron acceptors. The strain showed weak growth with sulfite as the electron acceptor. Fermentative growth with pyruvate, lactate and cysteine was observed in the absence of sulfate, but not with malate or fumarate. NaCl was not required, but the strain tolerated up to 40 g l–1. Strain HN2T did not require vitamins. The major cellular fatty acids were iso-C15 : 0 (23.8 %), C18 : 1  ω9t (18.4 %), C18 : 0 (15.0 %), C16 : 0 (14.5 %), and anteiso-C17 :0 (10.1 %). The major respiratory quinone was menaquinone MK-6(H2). The G+C content of the genomic DNA was 56.7 mol%. Based on 16S rRNA gene sequence analysis, the closest phylogenetic relative of strain HN2T is Desulfovibrio psychrotolerans JS1T (97.0 %). Digital DNA–DNA hybridization (dDDH) and average nucleotide identity (ANI) values of the strains HN2T and D. psychrotolerans JS1T were 22.2 and 79.8 %, respectively. Based on the phenotypic and molecular genetic evidence, we propose a novel species, D. subterraneus sp. nov. with the type strain HN2T (=DSM 101010T=NBRC 112213T).


2020 ◽  
Author(s):  
Friederike Gutmann ◽  
Cosimo Jann ◽  
Filipa Pereira ◽  
Andreas Johansson ◽  
Lars M. Steinmetz ◽  
...  

AbstractBackgroundBaker’s yeast is a widely used eukaryotic cell factory, producing a diverse range of compounds including biofuels and fine chemicals. The use of lignocellulose as feedstock offers the opportunity to run these processes in an environmentally sustainable way. However, the required hydrolysis pretreatment of lignocellulosic material releases toxic compounds that hamper yeast growth and consequently productivity.ResultsHere, we employ CRISPR interference in S. cerevisiae to identify genes modulating fermentative growth in plant hydrolysate and in presence of lignocellulosic toxins. We find that at least one third of hydrolysate-associated gene functions are explained by effects of known toxic compounds, such as the decreased growth of YAP1 or HAA1, or increased growth of DOT6 knock-down strains in hydrolysate.ConclusionOur study confirms previously known genetic elements and uncovers new targets towards designing more robust yeast strains for the utilization of lignocellulose hydrolysate as sustainable feedstock, and, more broadly, paves the way for applying CRISPRi screens to improve industrial fermentation processes.


2020 ◽  
Author(s):  
Ifey Alio ◽  
Mirja Gudzuhn ◽  
Marie Schölmerich ◽  
Pablo Pérez García ◽  
Christel Vollstedt ◽  
...  

<p><strong>Stenotrophomonas maltophilia</strong><strong> is one of the most frequently isolated multidrug resistant opportunistic pathogens. It contributes to disease progression in cystic fibrosis patients and is found in wounds, other infected tissues and on catheter surfaces. Only little is known on key processes linked to biofilm formation of S. maltophilia on a broader basis. Thus the aim of this study was the identification of key processes involved in biofilm formation of S. maltophilia on a global level. Therefore, we analyzed biofilm profiles of 300 globally collected clinical and environmental isolates of the main and recently identified lineages Sgn3, Sgn4 and Sm2 - Sm18 (Groeschel et al., 2020). These data together with the 3D structural analysis of a subset of clinical 40 clinical isolates revealed an unexpectedly high phenotypic variability on a strain specific level. Further transcriptome analysis of seven clinical isolates using biofilm grown cells identified a set of 106 shared and coexpressed genes and roughly 30-35 strain-specific genes. Based on these findings S. maltophilia employs a mostly fermentative growth modus under the biofilm conditions and uptake of iron, phosphorous and other metals appears to be of high relevance. Surprisingly, the transcriptome profiles of biofilm versus planktonic cells revealed that only 8.6% of all genes were differentially regulated when both conditions were compared.  This implies that only relatively few genes contribute to the change from planktonic to biofilm life style. Thereby iron uptake appears to be a key factor involved in this metabolic shift. The transcriptome data generated in this study together with the phenotypic and metabolic analysis represent so far the largest data set on S. maltophilia biofilm versus planktonic grown cells. This study now lays the foundation for the identification of new strategies in fighting S. maltophilia infections in clinical settings.</strong></p> <p>Ref:  Gröschel et al., 2020 ,The phylogenetic landscape and nosocomial spread of the multidrug-resistant opportunist Stenotrophomonas maltophilia. Nature Commun. 2020 Apr 27;11(1):2044. doi: 10.1038/s41467-020-15123-0.</p>


2020 ◽  
Vol 16 (1) ◽  
pp. 48-52 ◽  
Author(s):  
Chandrika Kadkol ◽  
Ian Macreadie

Background: Tryptamine, a biogenic monoamine that is present in trace levels in the mammalian central nervous system, has probable roles as a neurotransmitter and/or a neuromodulator and may be associated with various neuropsychiatric disorders. One of the ways tryptamine may affect the body is by the competitive inhibition of the attachment of tryptophan to tryptophanyl tRNA synthetases. Methods: This study has explored the effects of tryptamine on growth of six yeast species (Saccharomyces cerevisiae, Candida glabrata, C. krusei, C. dubliniensis, C. tropicalis and C. lusitaniae) in media with glucose or ethanol as the carbon source, as well as recovery of growth inhibition by the addition of tryptophan. Results: Tryptamine was found to have an inhibitory effect on respiratory growth of all yeast species when grown with ethanol as the carbon source. Tryptamine also inhibited fermentative growth of Saccharomyces cerevisiae, C. krusei and C. tropicalis with glucose as the carbon source. In most cases the inhibitory effects were reduced by added tryptophan. Conclusion: The results obtained in this study are consistent with tryptamine competing with tryptophan to bind mitochondrial and cytoplasmic tryptophanyl tRNA synthetases in yeast: effects on mitochondrial and cytoplasmic protein synthesis can be studied as a function of growth with glucose or ethanol as a carbon source. Of the yeast species tested, there is variation in the sensitivity to tryptamine and the rescue by tryptophan. The current study suggests appropriate yeast strains and approaches for further studies.


2019 ◽  
Vol 201 (15) ◽  
Author(s):  
Ameya A. Mashruwala ◽  
Brian J. Eilers ◽  
Amanda L. Fuchs ◽  
Javiera Norambuena ◽  
Carly A. Earle ◽  
...  

ABSTRACTThestaphylococcalrespiratoryregulator (SrrAB) modulates energy metabolism inStaphylococcus aureus. Studies have suggested that regulated protein catabolism facilitates energy homeostasis. Regulated proteolysis inS. aureusis achieved through protein complexes composed of a peptidase (ClpQ or ClpP) in association with an AAA+family ATPase (typically, ClpC or ClpX). In the present report, we tested the hypothesis that SrrAB regulates a Clp complex to facilitate energy homeostasis inS. aureus. Strains deficient in one or more Clp complexes were attenuated for growth in the presence of puromycin, which causes enrichment of misfolded proteins. A ΔsrrABstrain had increased sensitivity to puromycin. Epistasis experiments suggested that the puromycin sensitivity phenotype of the ΔsrrABstrain was a result of decreased ClpC activity. Consistent with this, transcriptional activity ofclpCwas decreased in the ΔsrrABmutant, and overexpression ofclpCsuppressed the puromycin sensitivity of the ΔsrrABstrain. We also found that ClpC positively influenced respiration and that it did so upon association with ClpP. In contrast, ClpC limited fermentative growth, while ClpP was required for optimal fermentative growth. Metabolomics studies demonstrated that intracellular metabolic profiles of the ΔclpCand ΔsrrABmutants were distinct from those of the wild-type strain, supporting the notion that both ClpC and SrrAB affect central metabolism. We propose a model wherein SrrAB regulates energy homeostasis, in part, via modulation of regulated proteolysis.IMPORTANCEOxygen is used as a substrate to derive energy by the bacterial pathogenStaphylococcus aureusduring infection; however,S. aureuscan also grow fermentatively in the absence of oxygen. To successfully cause infection,S. aureusmust tailor its metabolism to take advantage of respiratory activity. Different proteins are required for growth in the presence or absence of oxygen; therefore, when cells transition between these conditions, several proteins would be expected to become unnecessary. In this report, we show that regulated proteolysis is used to modulate energy metabolism inS. aureus. We report that the ClpCP protein complex is involved in specifically modulating aerobic respiratory growth but is dispensable for fermentative growth.


2017 ◽  
Vol 28 (20) ◽  
pp. 2609-2622 ◽  
Author(s):  
Ravi K. Singhal ◽  
Christine Kruse ◽  
Juliana Heidler ◽  
Valentina Strecker ◽  
Klaus Zwicker ◽  
...  

The yeast bc1 complex (complex III) and cytochrome oxidase (complex IV) are mosaics of core subunits encoded by the mitochondrial genome and additional nuclear-encoded proteins imported from the cytosol. Both complexes build various supramolecular assemblies in the mitochondrial inner membrane. The formation of the individual complexes and their supercomplexes depends on the activity of dedicated assembly factors. We identified a so far uncharacterized mitochondrial protein (open reading frame YDR381C-A) as an important assembly factor for complex III, complex IV, and their supercomplexes. Therefore we named this protein Cox interacting (Coi) 1. Deletion of COI1 results in decreased respiratory growth, reduced membrane potential, and hampered respiration, as well as slow fermentative growth at low temperature. In addition, coi1Δ cells harbor reduced steady-state levels of subunits of complexes III and IV and of the assembled complexes and supercomplexes. Interaction of Coi1 with respiratory chain subunits seems transient, as it appears to be a stoichiometric subunit neither of complex III nor of complex IV. Collectively this work identifies a novel protein that plays a role in the assembly of the mitochondrial respiratory chain.


Sign in / Sign up

Export Citation Format

Share Document