empty lacuna
Recently Published Documents


TOTAL DOCUMENTS

3
(FIVE YEARS 1)

H-INDEX

2
(FIVE YEARS 0)

2021 ◽  
pp. 088532822098118
Author(s):  
Aylin Kara ◽  
Semra Koçtürk ◽  
Gokcen Bilici ◽  
Hasan Havitcioglu

Tissue engineering approaches which include a combination of cells and scaffold materials provide an alternative treatment for meniscus regeneration. Decellularization and recellularization techniques are potential treatment options for transplantation. Maintenance of the ultrastructure composition of the extracellular matrix and repopulation with cells are important factors in constructing a biological scaffold and eliminating immunological reactions. The aim of the study is to develop a method to obtain biological functional meniscus scaffolds for meniscus regeneration. For this purpose, meniscus tissue was decellularized by our modified method, a combination of physical, chemical, and enzymatic methods and then recellularized with a meniscal cell population composed of fibroblasts, chondrocytes and fibrochondrocytes that obtained from mesenchymal stem cells. Decellularized and recellularized meniscus scaffolds were analysed biochemically, biomechanically and histologically. Our results revealed that cellular components of the meniscus were successfully removed by preserving collagen and GAG structures without any significant loss in biomechanical properties. Recellularization results showed that the meniscal cells were localized in the empty lacuna on the decellularized meniscus, and also well distributed and proliferated consistently during the cell culture period (p < 0.05). Furthermore, a high amount of DNA, collagen, and GAG contents (p < 0.05) were obtained with the meniscal cell population in recellularized meniscus tissue. The study demonstrates that our decellularization and recellularization methods were effective to develop a biological functional meniscus scaffold and can mimic the meniscus tissue with structural and biochemical features. We predict that the obtained biological meniscus scaffolds may provide avoidance of adverse immune reactions and an appropriate microenvironment for allogeneic or xenogeneic recipients in the transplantation process. Therefore, as a promising candidate, the obtained biological meniscus scaffolds might be verified with a transplantation experiment.


Author(s):  
Yue Zhang ◽  
Linlin Xu ◽  
Chengyong Wang ◽  
Zhihua Chen ◽  
Shuai Han ◽  
...  

Recently, the failure rate of fracture fixation to fractured bone has increased. Mechanical and thermal damage to the bone, which influences the contact area and cell growth between the bone and the screw, is the primary reason for fixation failure. However, research has mainly focused on force and temperature in bone drilling. In this study, the characteristics of hole edges, microcracks, empty lacunae, and osteon necrosis were investigated as viewed in the transverse and longitudinal sections after drilling. Drilling force and temperature were also recorded for comparing the relationship with mechanical and thermal damage. Experiments were conducted in vivo using five different drill geometries under the same drilling parameters. Characteristics of the hole wall were detected using computed tomography. Microcracks and necrosis were analyzed using the pathological sectioning method. The maximum microcrack was approximately 3000 and 1400 μm in the transverse section and longitudinal section, respectively, which were much larger than those observed in previous studies. Empty lacuna and osteon necrosis, starting from the Haversian canal, were also found. The drill bit geometry, chisel edge, flute number, edges, and steps had a strong effect on bone damage, particularly the chisel edge. The standard and classic surgical drill caused the greatest surface damage and necrosis of the five drill bit geometries studied. The microstructural features including osteons and matrix played an important role in numbers and length of microcracks and necrosis. More microcracks were generated in the transverse direction, while a greater length of the empty lacuna was generated in the longitudinal direction under the same drilling parameters. Microcracks mainly propagated in a straight manner in and parallel to the interstitial bone matrix and cement line. Drilling forces were not directly correlated with bone damage; thus, hole performance should be considered to evaluate the superiority and inferiority of drill bits rather than the drill force alone.


2015 ◽  
Vol 2015 ◽  
pp. 1-12 ◽  
Author(s):  
Yini Jiang ◽  
Chunfang Liu ◽  
Weiheng Chen ◽  
Hui Wang ◽  
Chao Wang ◽  
...  

Steroid-induced osteonecrosis of the femoral head (steroid-induced ONFH) is an avascular necrosis disease of bone. Tetramethylpyrazine (TMP), with significant vascular protective properties, has been widely used for the treatments of ischemic neural disorders and cardiovascular diseases. However, its role in the treatment of steroid-induced ONFH has not been evaluated. In this study, our results showed that TMP significantly decreased the ratio of empty lacuna, adipose tissue area, and adipocyte perimeter in steroid-induced ONFH rats histopathologically. TMP also reduced the levels of serum lipid dramatically by haematological examination. According to the micro-CT quantification, TMP could improve the microstructure of the trabecular bone and increases bone mineral density in steroid-induced ONFH rats. Moreover, TMP significantly increased the vessel volume, vessel surface, percentage of vessel volume, and vessel thickness of the femoral heads by micro-CT. Interestingly, the downregulation of VEGF and FLK1 proteins in the sera and necrotic femoral heads could be reversed by TMP treatment, and this was true for their mRNA expressions in femoral heads. In conclusion, these findings suggest for the first time that TMP may prevent steroid-induced ONFH and also enhance femoral head vascularization by inhibiting the effect of steroid on VEGF/FLK1 signal pathway.


Sign in / Sign up

Export Citation Format

Share Document