fast learning network
Recently Published Documents


TOTAL DOCUMENTS

21
(FIVE YEARS 11)

H-INDEX

5
(FIVE YEARS 0)

2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Bouslah Ayoub ◽  
Taleb Nora

PurposeParkinson's disease (PD) is a well-known complex neurodegenerative disease. Typically, its identification is based on motor disorders, while the computer estimation of its main symptoms with computational machine learning (ML) has a high exposure which is supported by researches conducted. Nevertheless, ML approaches required first to refine their parameters and then to work with the best model generated. This process often requires an expert user to oversee the performance of the algorithm. Therefore, an attention is required towards new approaches for better forecasting accuracy.Design/methodology/approachTo provide an available identification model for Parkinson disease as an auxiliary function for clinicians, the authors suggest a new evolutionary classification model. The core of the prediction model is a fast learning network (FLN) optimized by a genetic algorithm (GA). To get a better subset of features and parameters, a new coding architecture is introduced to improve GA for obtaining an optimal FLN model.FindingsThe proposed model is intensively evaluated through a series of experiments based on Speech and HandPD benchmark datasets. The very popular wrappers induction models such as support vector machine (SVM), K-nearest neighbors (KNN) have been tested in the same condition. The results support that the proposed model can achieve the best performances in terms of accuracy and g-mean.Originality/valueA novel efficient PD detection model is proposed, which is called A-W-FLN. The A-W-FLN utilizes FLN as the base classifier; in order to take its higher generalization ability, and identification capability is also embedded to discover the most suitable feature model in the detection process. Moreover, the proposed method automatically optimizes the FLN's architecture to a smaller number of hidden nodes and solid connecting weights. This helps the network to train on complex PD datasets with non-linear features and yields superior result.


2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Sajad Einy ◽  
Cemil Oz ◽  
Yahya Dorostkar Navaei

Given the growth of wireless networks and the increase of the advantages and applications of communication networks, especially mobile ad hoc networks (MANETs), this type of network has attracted the attention of users and researchers more than before. The benefit of these types of networks in various kinds of networks and environments is that MANET does not require to hardware infrastructure to communicate and send and receive data packets within the network. It is one of the main reasons for using these MANET in various fields. On the other hand, the increased popularity of these networks has led to many challenges, one of the most important of which is network security. In this regard, a lack of regulatory and security infrastructure in MANETs has caused some problems in sending and receiving data, where intrusion in the network has been recognized as one of the most important issues. In MANETs, wireless notes act as a link between the source and destination nodes and play the role of relays and routers in the network. Therefore, malicious node penetration and the destruction of information packages become feasible. Today, intrusion detection systems (IDSs) are used as a solution to deal with the problem through remote monitoring of the performance and behaviors of nodes existing in wireless sensor networks. In addition to detecting malicious nodes in the network, IDSs can predict the behavior of malicious nodes in the future in most cases. Therefore, the present study introduced a network IDS (NIDS) entitled MOPSO-FLN by using a combination of multiobjective particle swarm optimization algorithm- (MOPSO-) based feature subset selection (FSS) and fast-learning network (FLN). In this work, we used the KDD Cup99 and dataset to select features, train the network, and test the model. According to the simulation results, this method was able to improve the performance of the IDS in terms of evaluation criteria, compared to other previous methods, by creating a balance between the objectives of the number of representative features and training errors based on the evolutionary power of MOPSO.


2020 ◽  
Vol 50 (12) ◽  
pp. 4176-4194
Author(s):  
Meiqi Wang ◽  
Sixian Jia ◽  
Enli Chen ◽  
Shaopu Yang ◽  
Pengfei Liu ◽  
...  

Currently, effective Intrusion-detection systems (IDS) still represent one of the important security tools. However, hybrid models based on the IDS achieve better results compared with intrusion detection based on a single algorithm. But even so, the hybrid models based on traditional algorithms still face different limitations. This work is focused on providing two main goals; firstly, analysis based on the main methods and limitations of the most-recent hybrid model-based on intrusion detection, secondly, to propose a novel hybrid IDS model called FA-FLN based on the Firefly algorithm and Fast Learning Network.


Sign in / Sign up

Export Citation Format

Share Document