scholarly journals Arabidopsis cell wall composition determines disease resistance specificity and fitness

2021 ◽  
Vol 118 (5) ◽  
pp. e2010243118 ◽  
Author(s):  
Antonio Molina ◽  
Eva Miedes ◽  
Laura Bacete ◽  
Tinguaro Rodríguez ◽  
Hugo Mélida ◽  
...  

Plant cell walls are complex structures subject to dynamic remodeling in response to developmental and environmental cues and play essential functions in disease resistance responses. We tested the specific contribution of plant cell walls to immunity by determining the susceptibility of a set of Arabidopsis cell wall mutants (cwm) to pathogens with different parasitic styles: a vascular bacterium, a necrotrophic fungus, and a biotrophic oomycete. Remarkably, most cwm mutants tested (29/34; 85.3%) showed alterations in their resistance responses to at least one of these pathogens in comparison to wild-type plants, illustrating the relevance of wall composition in determining disease-resistance phenotypes. We found that the enhanced resistance of cwm plants to the necrotrophic and vascular pathogens negatively impacted cwm fitness traits, such as biomass and seed yield. Enhanced resistance of cwm plants is not only mediated by canonical immune pathways, like those modulated by phytohormones or microbe-associated molecular patterns, which are not deregulated in the cwm tested. Pectin-enriched wall fractions isolated from cwm plants triggered immune responses in wild-type plants, suggesting that wall-mediated defensive pathways might contribute to cwm resistance. Cell walls of cwm plants show a high diversity of composition alterations as revealed by glycome profiling that detect specific wall carbohydrate moieties. Mathematical analysis of glycome profiling data identified correlations between the amounts of specific wall carbohydrate moieties and disease resistance phenotypes of cwm plants. These data support the relevant and specific function of plant wall composition in plant immune response modulation and in balancing disease resistance/development trade-offs.

2020 ◽  
Author(s):  
Antonio Molina ◽  
Eva Miedes ◽  
Laura Bacete ◽  
Tinguaro Rodríguez ◽  
Hugo Mélida ◽  
...  

AbstractPlant cell walls are complex structures subject to dynamic remodeling in response to developmental and environmental cues, and play essential functions in disease resistance responses. We tested the specific contribution of plant cell walls to immunity by determining the susceptibility of a set of Arabidopsis cell wall mutants (cwm) to pathogens with different parasitic styles: a vascular bacterium, a necrotrophic fungus and a biotrophic oomycete. Remarkably, most cwm mutants tested (31/38; 81.6%) showed alterations in their resistance responses to at least one of these pathogens, in comparison to wild-type plants, illustrating the relevance of wall composition in determining disease resistance phenotypes. We found that the enhanced resistance of cwm plants to the necrotrophic and vascular pathogens negatively impacted on cwm fitness traits, like biomass and seed yield. Enhanced resistance of cwm plants is not only mediated by canonical immune pathways, like those modulated by phytohormones or Microbe-Associated Molecular Patterns, which are not de-regulated in all cwm tested. Pectin-enriched wall fractions isolated from cwm plants triggered immune responses in other plants, suggesting that wall-mediated defensive pathways might contribute to cwm resistance. Cell walls of cwm plants show a high diversity of composition alterations as revealed by glycome profiling that detect specific wall carbohydrate moieties. Mathematical analysis of glycome profiling data identified correlations between the amounts of specific wall carbohydrate moieties and disease resistance phenotypes of cwm plants. These data support the relevant and specific function of plant wall composition in plant immune response modulation and in balancing disease resistance/development trade-offs.


Plants ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 1263
Author(s):  
David Stuart Thompson ◽  
Azharul Islam

The extensibility of synthetic polymers is routinely modulated by the addition of lower molecular weight spacing molecules known as plasticizers, and there is some evidence that water may have similar effects on plant cell walls. Furthermore, it appears that changes in wall hydration could affect wall behavior to a degree that seems likely to have physiological consequences at water potentials that many plants would experience under field conditions. Osmotica large enough to be excluded from plant cell walls and bacterial cellulose composites with other cell wall polysaccharides were used to alter their water content and to demonstrate that the relationship between water potential and degree of hydration of these materials is affected by their composition. Additionally, it was found that expansins facilitate rehydration of bacterial cellulose and cellulose composites and cause swelling of plant cell wall fragments in suspension and that these responses are also affected by polysaccharide composition. Given these observations, it seems probable that plant environmental responses include measures to regulate cell wall water content or mitigate the consequences of changes in wall hydration and that it may be possible to exploit such mechanisms to improve crop resilience.


2020 ◽  
Author(s):  
Huimin Xu ◽  
Yuanyuan Zhao ◽  
Yuanzhen Suo ◽  
Yayu Guo ◽  
Yi Man ◽  
...  

Abstract Background: Cell wall imaging can considerably permit direct visualization of the molecular architecture of cell walls and provide the detailed chemical information on wall polymers, which is imperative to better exploit and use the biomass polymers; however, detailed imaging and quantifying of the native composition and architecture in the cell wall remains challenging.Results: Here, we describe a label-free imaging technology, coherent Raman scattering microscopy (CRS), including coherent anti-Stokes Raman scattering (CARS) microscopy and stimulated Raman scattering (SRS) microscopy, which images the major structures and chemical composition of plant cell walls. The major steps of the procedure are demonstrated, including sample preparation, setting the mapping parameters, analysis of spectral data, and image generation. Applying this rapid approach, which will help researchers understand the highly heterogeneous structures and organization of plant cell walls.Conclusions: This method can potentially be incorporated into label-free microanalyses of plant cell wall chemical composition based on the in situ vibrations of molecules.


Author(s):  
WILLIAM S. YORK ◽  
ALAN G. DARVILL ◽  
MICHAEL MCNEIL ◽  
THOMAS T. STEVENSON ◽  
PETER ALBERSHEIM

Author(s):  
William S. York ◽  
Alan G. Darvill ◽  
Michael McNeil ◽  
Thomas T. Stevenson ◽  
Peter Albersheim

2019 ◽  
Vol 20 (12) ◽  
pp. 2946 ◽  
Author(s):  
Xiao Han ◽  
Li-Jun Huang ◽  
Dan Feng ◽  
Wenhan Jiang ◽  
Wenzhuo Miu ◽  
...  

Plant cells are separated by cellulose cell walls that impede direct cell-to-cell contact. In order to facilitate intercellular communication, plant cells develop unique cell-wall-spanning structures termed plasmodesmata (PD). PD are membranous channels that link the cytoplasm, plasma membranes, and endoplasmic reticulum of adjacent cells to provide cytoplasmic and membrane continuity for molecular trafficking. PD play important roles for the development and physiology of all plants. The structure and function of PD in the plant cell walls are highly dynamic and tightly regulated. Despite their importance, plasmodesmata are among the few plant cell organelles that remain poorly understood. The molecular properties of PD seem largely elusive or speculative. In this review, we firstly describe the general PD structure and its protein composition. We then discuss the recent progress in identification and characterization of PD-associated plant cell-wall proteins that regulate PD function, with particular emphasis on callose metabolizing and binding proteins, and protein kinases targeted to and around PD.


2018 ◽  
Vol 19 (10) ◽  
pp. 2878 ◽  
Author(s):  
Alexandra Wormit ◽  
Björn Usadel

Plant cell walls are complex and dynamic structures that play important roles in growth and development, as well as in response to stresses. Pectin is a major polysaccharide of cell walls rich in galacturonic acid (GalA). Homogalacturonan (HG) is considered the most abundant pectic polymer in plant cell walls and is partially methylesterified at the C6 atom of galacturonic acid. Its degree (and pattern) of methylation (DM) has been shown to affect biomechanical properties of the cell wall by making pectin susceptible for enzymatic de-polymerization and enabling gel formation. Pectin methylesterases (PMEs) catalyze the removal of methyl-groups from the HG backbone and their activity is modulated by a family of proteinaceous inhibitors known as pectin methylesterase inhibitors (PMEIs). As such, the interplay between PME and PMEI can be considered as a determinant of cell adhesion, cell wall porosity and elasticity, as well as a source of signaling molecules released upon cell wall stress. This review aims to highlight recent updates in our understanding of the PMEI gene family, their regulation and structure, interaction with PMEs, as well as their function in response to stress and during development.


2019 ◽  
Vol 60 (12) ◽  
pp. 2629-2637 ◽  
Author(s):  
Stefan Mielke ◽  
Debora Gasperini

AbstractPlant cell walls are sophisticated carbohydrate-rich structures representing the immediate contact surface with the extracellular environment, often serving as the first barrier against biotic and abiotic stresses. Notably, a variety of perturbations in plant cell walls result in upregulated jasmonate (JA) production, a phytohormone with essential roles in defense and growth responses. Hence, cell wall-derived signals can initiate intracellular JA-mediated responses and the elucidation of the underlying signaling pathways could provide novel insights into cell wall maintenance and remodeling, as well as advance our understanding on how is JA biosynthesis initiated. This Mini Review will describe current knowledge about cell wall-derived damage signals and their effects on JA biosynthesis, as well as provide future perspectives.


2006 ◽  
Vol 84 (4) ◽  
pp. 613-621 ◽  
Author(s):  
M.E. Galway

Rapid progress is being made in determining the composition, synthesis, and mechanical properties of plant cell walls. Although tip-growing root hairs provide an excellent example of high-speed cell wall assembly, they have been relatively neglected by researchers interested in cell walls and those interested in tip growth. This review aims to present the root hair as an experimental system for future cell wall studies by assembling recent discoveries about the walls onto the existing framework based on older information. Most recent data come from arabidopsis ( Arabidopsis thaliana (L.) Heynh) and model legumes. Evidence supporting the turgor-mediated expansion of hair cell walls is considered, along with a survey of three components needed for cell wall expansion without rupture: cellulose (the role of CesA cellulose synthases is also addressed), Csld3, a cellulose synthase-like protein, and Lrx1, a cell wall protein. Further clues about hair cell wall composition have been obtained from gene expression studies and the use of monoclonal antibodies. Finally, there is a review of the experimental evidence that (i) hairs near the hypocotyl differ developmentally and structurally from other hairs and (ii) biosynthesis of wall components in hairs may differ significantly from the epidermal cells that they grew from. All of these recent advances suggest that root hairs could provide valuable data to augment models of plant cell walls based on more conventional cell types.


1991 ◽  
Vol 71 (2) ◽  
pp. 379-388 ◽  
Author(s):  
Catherine Bogaert ◽  
L. Gomez ◽  
J. P. Jouany

The effect of lasalocid and cationomycin on plant cell wall digestion was tested in a Latin square design experiment over three periods on six adult sheep fed three diets: a control diet (T) without antibiotics, a diet (L) with 33 mg kg−1 of lasalocid, and a diet (C) with 33 mg kg−1 of cationomycin. The dry matter and plant cell wall digestibilities were not affected by the addition of antibiotics. The digestive flow measurements at the duodenum showed that the antibiotic had no effect on the apparent digestion of dry matter, organic matter and plant cell walls along the digestive tract. This was confirmed by the in sacco feed and pure cellulose rumen degradation measurements. Lasalocid, however, decreased the true digestion of feed dry matter in the rumen, as shown by the duodenal flow measurements after being corrected for microbial dry matter. Compared with the control diet, diets (L) and (C) increased the propionate percentage in the rumen VFA mixture (T = 14.9, L = 19.4, C = 18.9) and decreased acetate (T = 66.1, L = 63.8, C = 65.7) and butyrate (T = 14.1, L = 12.7, C = 11.7) percentages. The addition of antibiotics decreased the rumen ammonia nitrogen concentration by 14%. The CO2 to CH4 ratio in the gas mixture was, however, not statistically modified, and no ionophore effect was observed on the protozoa mean population. Key words: Lasalocid, cationomycin, digestion, cell wall carbohydrates, sheep, rumen


Sign in / Sign up

Export Citation Format

Share Document