zirconium complexes
Recently Published Documents


TOTAL DOCUMENTS

474
(FIVE YEARS 22)

H-INDEX

42
(FIVE YEARS 3)

2021 ◽  
Author(s):  
◽  
Peter Chapple

<p>Early-late transition metal heterobimetallic complexes with direct metal to metal interactions are desirable synthetic targets due to the complementary reactivity of the two different metals present in these compounds. The electron-rich late transition metal (often Rh, Ir, Fe, or Mo), and electron-poor early transition metal create an ideal environment for heterolytic bond cleavage in what is often termed ‘cooperative reactivity’. This project aimed to synthesise a zirconium-germanium heterobimetallic complex based on a known heterobimetallic ligand scaffold; 1.   The synthesis of the desired heterobimetallic 1 was attempted using two different synthetic approaches. The first involved the investigating the reactivity between an unsaturated zirconium nitrogen bond (an imidozirconocene) and a germanium(II) source with a lone pair of electrons (known as a germylene). The second approach investigated the reactivity between an unsaturated germanium nitrogen bond (a germanimine) and a zirconium(II) source. In order to have the highest chance of success, a wide range of germanium and zirconium complexes were synthesised.  The novel germylenes include [Ge(NAPHTMS)] (NAPHTMS = [1,8-((CH3)3Si)N)2C10H6]) and [Ge(BIANMes)] (BIANMes = [((2,4,6-Me(C6H2)N)2)C12H6)]). These proved to be unreactive towards the imidozirconium species [Cp2Zr(NAr*)(THF)] and [Cp2Zr(NDipp)(THF)] (Ar* = (2,6-(C6H5)2CH)-4-(tBu)C6H2), Dipp = (2,6-((CH3)2CH)C6H3)) as well as other amidozirconocenes. However, within these studies, the mixed coordination germanium species [[Ge(NAPHTMS)Ge(Bu)(NAPHTMS)]-[Li(THF4)]+] and [[Ge(NAPHTMS)Ge(Me)(NAPHTMS)]-[Li(THF4)]+]were synthesised. Density functional theory (DFT) molecular orbital calculations were used to help explain the observed reactivity.  With regards to the second approach, routes to new germanimine complexes such as [(HMDS)2Ge(NMes)] ((HMDS) = ((CH3)3Si)2N), Mes = (2,4,6-CH3(C6H3))), were explored, and several methods for generating “Cp2Zr” were examined. Although these conditions proved unsuccessful for generating 1, the reaction between dialkyl zirconocene with azides to form novel zirconocene triazenido complexes was discovered and the sterics affecting the synthesis of new germanimine complexes was investigated.</p>


2021 ◽  
Author(s):  
◽  
Peter Chapple

<p>Early-late transition metal heterobimetallic complexes with direct metal to metal interactions are desirable synthetic targets due to the complementary reactivity of the two different metals present in these compounds. The electron-rich late transition metal (often Rh, Ir, Fe, or Mo), and electron-poor early transition metal create an ideal environment for heterolytic bond cleavage in what is often termed ‘cooperative reactivity’. This project aimed to synthesise a zirconium-germanium heterobimetallic complex based on a known heterobimetallic ligand scaffold; 1.   The synthesis of the desired heterobimetallic 1 was attempted using two different synthetic approaches. The first involved the investigating the reactivity between an unsaturated zirconium nitrogen bond (an imidozirconocene) and a germanium(II) source with a lone pair of electrons (known as a germylene). The second approach investigated the reactivity between an unsaturated germanium nitrogen bond (a germanimine) and a zirconium(II) source. In order to have the highest chance of success, a wide range of germanium and zirconium complexes were synthesised.  The novel germylenes include [Ge(NAPHTMS)] (NAPHTMS = [1,8-((CH3)3Si)N)2C10H6]) and [Ge(BIANMes)] (BIANMes = [((2,4,6-Me(C6H2)N)2)C12H6)]). These proved to be unreactive towards the imidozirconium species [Cp2Zr(NAr*)(THF)] and [Cp2Zr(NDipp)(THF)] (Ar* = (2,6-(C6H5)2CH)-4-(tBu)C6H2), Dipp = (2,6-((CH3)2CH)C6H3)) as well as other amidozirconocenes. However, within these studies, the mixed coordination germanium species [[Ge(NAPHTMS)Ge(Bu)(NAPHTMS)]-[Li(THF4)]+] and [[Ge(NAPHTMS)Ge(Me)(NAPHTMS)]-[Li(THF4)]+]were synthesised. Density functional theory (DFT) molecular orbital calculations were used to help explain the observed reactivity.  With regards to the second approach, routes to new germanimine complexes such as [(HMDS)2Ge(NMes)] ((HMDS) = ((CH3)3Si)2N), Mes = (2,4,6-CH3(C6H3))), were explored, and several methods for generating “Cp2Zr” were examined. Although these conditions proved unsuccessful for generating 1, the reaction between dialkyl zirconocene with azides to form novel zirconocene triazenido complexes was discovered and the sterics affecting the synthesis of new germanimine complexes was investigated.</p>


2021 ◽  
pp. 131925
Author(s):  
Wasifa Asim ◽  
Azal Shakir Waheeb ◽  
Masar Ali Awad ◽  
Afaf Murtada Kadhum ◽  
Asjad Ali ◽  
...  

2021 ◽  
Author(s):  
Yuriy Gerasymchuk ◽  
Leili Tahershamsi ◽  
Robert Tomala ◽  
Anna Wedzynska ◽  
Viktor Chernii ◽  
...  

AbstractThis article is a part of a scientific project focused on obtaining a new type of composite materials that are characterized by singlet oxygen generation upon irradiation with red light, which can be used as antibacterial agents. The composite material is nanoscale graphite oxide (GO) particles covalently bonded to an axially substituted zirconium phthalocyanine complex. For this purpose, two phthalocyanine zirconium complexes, axially mono-substituted with 4-aminosalicylic or 4-aminophthalic acids, were prepared and measured in terms of structure, morphology, and spectroscopic properties. The zirconium phthalocyanines are photosensitizers, and the axial ligands are bridging links connecting the complexes to the GO carrier (due to their terminal amino groups and carboxyl groups, respectively). The axial ligand in zirconium phthalocyanine complexes has a strong influence on the stability and optical properties of composite materials and, consequently, on reactive oxygen species (ROS) generation. In this paper, the effect of composite components (4-aminophthalato or 4-aminosalicylato substituted zirconium phthalocyanine complex as a photosensitizer and graphite oxide as a carrier and modulator of the action of active components) on ROS generation for potential antibacterial use is discussed.


2021 ◽  
Author(s):  
Elizabeth Hamilton ◽  
Alexander Kilpatrick ◽  
Zoe Turner ◽  
Duncan Fraser ◽  
Jean-Charles Buffet ◽  
...  

We report the synthesis and characterisation of new permethylpentalene zirconium bis(amido) and permethylpentalene zirconium cyclopentadienyl mono(amido) complexes, and their reactivity with carbon dioxide.


2021 ◽  
Author(s):  
Sagnik Kumar Roymuhury ◽  
Mrinmay Mandal ◽  
Debashis Chakraborty ◽  
V. Ramkumar

The synthesis and characterization of novel homoleptic Ti and Zr complexes with tridentate ONO-type Schiff base ligands and their catalytic activities towards the ring-opening polymerization (ROP) of lactide are reported....


Author(s):  
Qanbarli Zeynab ◽  
Khanmetov Akber ◽  
Azizbeyli Hemide ◽  
Khamiyev Matlab

This work presents the results on the preparation of new readily available zirconium-containing arylimine complex catalytic systems and their application together with metallocenes in ethylene polymerization. For this purpose, zirconium complexes with grafted ionic liquid type ligands were synthesized and tested in the ethylene polymerization process. On the other hand, it is known that one of the main industrial catalysts for the polymerization process of ethylene is dicycopentadienyl titanium and zirconium dichloride. Therefore, one of the main objectives of the work is to test the using of the newly synthesized complexes with the industrial Cp2TiCl2 catalyst. The products obtained were identified by various physicochemical methods and it was found that these catalytic systems allow one to control the structure and composition of the products obtained.


2020 ◽  
Vol 69 (1) ◽  
pp. 61-67
Author(s):  
I. R. Ramazanov ◽  
R. N. Kadikova ◽  
Z. R. Saitova ◽  
U. M. Dzhemilev
Keyword(s):  

Author(s):  
Michael P. Cibuzar ◽  
Bryan T. Novas ◽  
Rory Waterman
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document