hydroxycarboxylic acid
Recently Published Documents


TOTAL DOCUMENTS

157
(FIVE YEARS 31)

H-INDEX

22
(FIVE YEARS 4)

2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Cierla McGuire Sams ◽  
Kasey Shepp ◽  
Jada Pugh ◽  
Madison R. Bishop ◽  
Nancy D. Merner

Abstract Background Three genes clustered together on chromosome 12 comprise a group of hydroxycarboxylic acid receptors (HCARs): HCAR1, HCAR2, and HCAR3. These paralogous genes encode different G-protein coupled receptors responsible for detecting glycolytic metabolites and controlling fatty acid oxidation. Though better known for regulating lipid metabolism in adipocytes, more recently, HCARs have been functionally associated with breast cancer proliferation/survival; HCAR2 has been described as a tumor suppressor and HCAR1 and HCAR3 as oncogenes. Thus, we sought to identify germline variants in HCAR1, HCAR2, and HCAR3 that could potentially be associated with breast cancer risk. Methods Two different cohorts of breast cancer cases were investigated, the Alabama Hereditary Cancer Cohort and The Cancer Genome Atlas, which were analyzed through nested PCRs/Sanger sequencing and whole-exome sequencing, respectively. All datasets were screened for rare, non-synonymous coding variants. Results Variants were identified in both breast cancer cohorts, some of which appeared to be associated with breast cancer BC risk, including HCAR1 c.58C > G (p.P20A), HCAR2 c.424C > T (p.R142W), HCAR2 c.517_518delinsAC (p.G173T), HCAR2 c.1036A > G (p.M346V), HCAR2 c.1086_1090del (p.P363Nfs*26), HCAR3 c.560G > A (p.R187Q), and HCAR3 c.1117delC (p.Q373Kfs*82). Additionally, HCAR2 c.515C > T (p.S172L), a previously identified loss-of-function variant, was identified. Conclusions Due to the important role of HCARs in breast cancer, it is vital to understand how these genetic variants play a role in breast cancer risk and proliferation and their consequences on treatment strategies. Additional studies will be needed to validate these findings. Nevertheless, the identification of these potentially pathogenic variants supports the need to investigate their functional consequences.


2021 ◽  
Vol 9 (11) ◽  
pp. 2397
Author(s):  
Takuma Sakurai ◽  
Ayako Horigome ◽  
Toshitaka Odamaki ◽  
Takashi Shimizu ◽  
Jin-zhong Xiao

Hydroxycarboxylic acid receptor 3 (HCA3) was recently identified in the genomes of humans and other hominids but not in other mammals. We examined the production of HCA3 ligands by Bifidobacterium spp. In addition to 4-hydroxyphenyllactic acid, phenyllactic acid (PLA), and indole-3-lactic acid (ILA), we found that LeuA was produced by Bifidobacterium as an HCA3 ligand. The four ligands produced were the mixtures of enantiomers, and D-ILA, D-PLA, and D-LeuA showed stronger activity of the HCA3 ligand than their respective L-isomers. However, there was no difference in AhR activity between the two ILA enantiomers. These results provide new insights into the HCA3 ligands produced by Bifidobacterium and suggest the importance of investigating the absolute stereo structures of these metabolites.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
P. Órdenes ◽  
P. S. Villar ◽  
E. Tarifeño-Saldivia ◽  
M. Salgado ◽  
R. Elizondo-Vega ◽  
...  

AbstractPrevious studies indicate that the activity of hypothalamic POMC neurons can be regulated by glucose via intracellular mechanisms, but its regulation by lactate is poorly understood. In addition to its energetic role, lactate acts as a signaling molecule. In this study, we evaluated the function and location of the lactate receptor, hydroxycarboxylic acid receptor 1 (HCAR1). We used a conditional genetic approach to label POMC neurons and evaluated their sensitivity to lactate using patch-clamp recordings. l-Lactate and 3-chloro-5-hydroxybenzoic acid (3Cl-HBA), HCAR1 specific agonist depolarized POMC neurons and the increase in excitability was abolished by pertussis toxin (PTX), indicating the involvement of Gαi/o-protein-coupled receptors. In addition, the depolarization of a subset of POMC neurons was sensitive to α-cyano-4-hydroxycinnamate (4-CIN), a lactate transporter blocker, suggesting that the depolarization induced by l-lactate can also occur by direct intracellular action. Surprisingly, HCAR1 was not detected in POMC neurons, but instead localized in astrocytes. These results suggest a new lactate-mediated mechanism for astrocyte-neuron intercellular communication.


2021 ◽  
Vol 12 ◽  
Author(s):  
Lara Buscemi ◽  
Camille Blochet ◽  
Pierre J. Magistretti ◽  
Lorenz Hirt

Lactate is an intriguing molecule with emerging physiological roles in the brain. It has beneficial effects in animal models of acute brain injuries and traumatic brain injury or subarachnoid hemorrhage patients. However, the mechanism by which lactate provides protection is unclear. While there is evidence of a metabolic effect of lactate providing energy to deprived neurons, it can also activate the hydroxycarboxylic acid receptor 1 (HCAR1), a Gi-coupled protein receptor that modulates neuronal firing rates. After cerebral hypoxia-ischemia, endogenously produced brain lactate is largely increased, and the exogenous administration of more lactate can decrease lesion size and ameliorate the neurological outcome. To test whether HCAR1 plays a role in lactate-induced neuroprotection, we injected the agonists 3-chloro-5-hydroxybenzoic acid and 3,5-dihydroxybenzoic acid into mice subjected to 30-min middle cerebral artery occlusion. The in vivo administration of HCAR1 agonists at reperfusion did not appear to exert any relevant protective effect as seen with lactate administration. Our results suggest that the protective effects of lactate after hypoxia-ischemia come rather from the metabolic effects of lactate than its signaling through HCAR1.


2021 ◽  
Vol 12 ◽  
Author(s):  
Benedetta Parodi ◽  
Alessia Sanna ◽  
Alessia Cedola ◽  
Antonio Uccelli ◽  
Nicole Kerlero de Rosbo

Monomethyl fumarate (MMF), metabolite of dimethyl fumarate (DMF), an immunosuppressive drug approved for the treatment of multiple sclerosis (MS), is a potent agonist for hydroxycarboxylic acid receptor 2 (HCAR2), eliciting signals that dampen cell activation or lead to inflammation such as the skin flushing reaction that is one of the main side effects of the treatment, together with gastrointestinal inflammation. Our aim is to further understand the molecular basis underlying these differential effects of the drug. We have used wild-type and HCAR2 knock-out mice to investigate, in vitro and ex vivo under steady-state and pathological conditions, the HCAR2-mediated signaling pathways activated by MMF in dendritic cells (DC), which promote differentiation of T cells, and in intestinal epithelial cells (IEC) where activation of a pro-inflammatory pathway, such as the cyclooxygenase-2 pathway involved in skin flushing, could underlie gastrointestinal side effects of the drug. To understand how DMF treatment might impact on gut inflammation induced by experimental autoimmune encephalomyelitis (EAE), the animal model for MS, we have used 3D X-ray phase contrast tomography and flow cytometry to monitor possible intestinal alterations at morphological and immunological levels, respectively. We show that HCAR2 is a pleiotropically linked receptor for MMF, mediating activation of different pathways leading to different outcomes in different cell types, depending on experimental in-vitro and in-vivo conditions. In the small intestine of EAE-affected mice, DMF treatment affected migration of tolerogenic DC from lamina propria to mesenteric lymph nodes, and/or reverted their profile to pro-inflammatory, probably as a result of reduced expression of aldehyde dehydrogenase and transforming growth factor beta as well as the inflammatory environment. Nevertheless, DMF treatment did not amplify the morphological alterations induced by EAE. On the basis of our further understanding of MMF signaling through HCAR2, we suggest that the pleiotropic signaling of fumarate via HCAR2 should be addressed for its pharmaceutical relevance in devising new lead compounds with reduced inflammatory side effects.


2021 ◽  
Vol 3 (1) ◽  
pp. 72-80
Author(s):  
G. G. Agbi ◽  
◽  
O. Z. Tachere ◽  
H. O. Juwah ◽  
◽  
...  

This study was carried out to evaluate the effect of chemical admixtures on the compressive strength of concretes. The concretes were produced with the concrete mix ratio of 1:2:4, while water to cement (w/c) ratios of 0.35, 0.4, 0.45, 0.5 and 0.55 were adopted. Different concrete mixtures were produced using two chemical admixtures (hydroxycarboxylic acid and MasterRheobuild 1100) applied at the rate of 1.3% (weight of the cement), during the production process. Laboratory results of the fine aggregate used for the concrete production showed that it was well graded met international standards. All the concretes were produced and tested in accordance to American Society for Testing and Materials (ASTM) standard procedures. Results indicated that the concrete produced with the chemical admixtures showed better concrete performances both in the fresh and hardened state. After 28 days of casting, concrete produced with MasterRheobuild 1100 admixture had the best compressive strength (32 MPa); compared with the compressive strength of the concrete produced with the hydroxycarboxylic acid admixture (28 MPa), and the control concrete samples that had compressive strength of 25 MPa. In addition, the fresh concrete produced with chemical admixtures gave a better slump than the fresh concrete produced without any chemical admixture. Likewise, hydroxycarboxylic acid admixture performs better among the two admixtures used, given a more linear relationship between the slump and water/cement ratio. These results showed the importance of chemical admixtures when higher compressive strength becomes a vital factor in structural constructions


2021 ◽  
Author(s):  
Folami Powell ◽  
Amany Tawfik ◽  
Pachiappan Arjunan ◽  
Deeksha G Chopra ◽  
Mohamed Al-Shabrawey ◽  
...  

Background: Excessive oxidative stress and related chronic, sub-clinical inflammation is linked causally to the development and progression of degenerative diseases of the retina including diabetic retinopathy, age-related macular degeneration and glaucoma, leading causes of blindness worldwide. The above responses may be related directly to dysregulated retinal immunity and are potentiated by the combined actions of native retinal cells (e.g., retinal pigment epithelial (RPE) and microglial cells) and immune cells infiltrating from the periphery. Maintaining tight regulation of these cells such that effective control of pathogens is accomplished yet uncontrolled inflammation and consequent tissue damage is prevented is extremely important. However, the molecular mechanisms that control this delicate balance are poorly understood. We hypothesize that the hydroxycarboxylic acid receptor 2 (HCAR2/GPR109A) may play an important role. HCAR2/GPR109A has been shown to regulate immune cell responses that potentiate anti-inflammatory signaling upon its activation in various tissues as evidenced principally by suppressed pro-inflammatory cytokine secretion. We have demonstrated HCAR2/GPR109A expression in RPE, microglia and endothelial cells and, our in vitro studies suggest that the receptor elicits anti-inflammatory signaling in these cell types. However, the functional relevance of HCAR2/GPR109A expression and its activation in the retina of the living animal has not been demonstrated definitively. This is the purpose of the present study. Methods: Retinal function was evaluated in temporally in wildtype (Gpr109a/Hcar2+/+, WT) and knockout (Gpr109a/Hcar2-/-, KO) mice via electroretinography (ERG). Fundoscopic imaging, spectral domain-optical coherence tomography (OCT), fluorescein angiography and post-mortem histological analyses were additionally performed to evaluate retinal health. Gene microarray, RT-qPCR studies, ingenuity analyses and proteome pathway mapping were performed to evaluate potential key differences in the molecular signatures of WT and KO mouse retinas. Leukostasis and flow cytometric assays were performed to demonstrate the in vivo impact of GPR109A/HCAR2 expression and its therapeutic activation on pro-inflammatory immune cell trafficking in retina. Results: Longitudinal studies revealed progressive anomalies in retinal morphology and function in HCAR2/GPR109A knockout mice that impacted the entire retina. Gene expression and protein interactome analyses revealed differences in gene and protein expression consistent with the increased immune reactivity and infiltration of bone-marrow derived immune cells detected in KO mouse retinas. Studies conducted in an acute model of retinal (endotoxin-induced) inflammation revealed that targeting the receptor via intraperitoneal administration of beta-hydroxybutyrate limits immune cell activation, infiltration and related inflammation in WT retinas. Conclusions: The present studies demonstrate a central role for HCAR2/GPR109A in regulating the complex interplay between resident retinal cells and peripheral immune cells and, the potential utility of targeting the receptor therapeutically to prevent or treat inflammatory retinal diseases.


Sign in / Sign up

Export Citation Format

Share Document