rnai suppressor
Recently Published Documents


TOTAL DOCUMENTS

27
(FIVE YEARS 1)

H-INDEX

11
(FIVE YEARS 0)

2021 ◽  
Vol 17 (8) ◽  
pp. e1009790
Author(s):  
Yuqiang Zhang ◽  
Yan Xu ◽  
Yunpeng Dai ◽  
Zhe Li ◽  
Jiaxing Wang ◽  
...  

The interferon-regulated antiviral responses are essential for the induction of both innate and adaptive immunity in mammals. Production of virus-derived small-interfering RNAs (vsiRNAs) to restrict virus infection by RNA interference (RNAi) is a recently identified mammalian immune response to several RNA viruses, which cause important human diseases such as influenza and Zika virus. However, little is known about Dicer processing of viral double-stranded RNA replicative intermediates (dsRNA-vRIs) in mammalian somatic cells. Here we show that infected somatic cells produced more influenza vsiRNAs than cellular microRNAs when both were produced by human Dicer expressed de novo, indicating that dsRNA-vRIs are not poor Dicer substrates as previously proposed according to in vitro Dicer processing of synthetic long dsRNA. We report the first evidence both for canonical vsiRNA production during wild-type Nodamura virus infection and direct vsiRNA sequestration by its RNAi suppressor protein B2 in two strains of suckling mice. Moreover, Sindbis virus (SINV) accumulation in vivo was decreased by prior production of SINV-targeting vsiRNAs triggered by infection and increased by heterologous expression of B2 in cis from SINV genome, indicating an antiviral function for the induced RNAi response. These findings reveal that unlike artificial long dsRNA, dsRNA-vRIs made during authentic infection of mature somatic cells are efficiently processed by Dicer into vsiRNAs to direct antiviral RNAi. Interestingly, Dicer processing of dsRNA-vRIs into vsiRNAs was inhibited by LGP2 (laboratory of genetics and physiology 2), which was encoded by an interferon-stimulated gene (ISG) shown recently to inhibit Dicer processing of artificial long dsRNA in cell culture. Our work thus further suggests negative modulation of antiviral RNAi by a known ISG from the interferon response.



Genes ◽  
2020 ◽  
Vol 11 (10) ◽  
pp. 1169
Author(s):  
Soon H. Choi ◽  
Rosie E. Reeves ◽  
Guillermo S. Romano Ibarra ◽  
Thomas J. Lynch ◽  
Weam S. Shahin ◽  
...  

Lentiviral-mediated integration of a CFTR transgene cassette into airway basal cells is a strategy being considered for cystic fibrosis (CF) cell-based therapies. However, CFTR expression is highly regulated in differentiated airway cell types and a subset of intermediate basal cells destined to differentiate. Since basal stem cells typically do not express CFTR, suppressing the CFTR expression from the lentiviral vector in airway basal cells may be beneficial for maintaining their proliferative capacity and multipotency. We identified miR-106b as highly expressed in proliferating airway basal cells and extinguished in differentiated columnar cells. Herein, we developed lentiviral vectors with the miR-106b-target sequence (miRT) to both study miR-106b regulation during basal cell differentiation and detarget CFTR expression in basal cells. Given that miR-106b is expressed in the 293T cells used for viral production, obstacles of viral genome integrity and titers were overcome by creating a 293T-B2 cell line that inducibly expresses the RNAi suppressor B2 protein from flock house virus. While miR-106b vectors effectively detargeted reporter gene expression in proliferating basal cells and following differentiation in the air–liquid interface and organoid cultures, the CFTR-miRT vector produced significantly less CFTR-mediated current than the non-miR-targeted CFTR vector following transduction and differentiation of CF basal cells. These findings suggest that miR-106b is expressed in certain airway cell types that contribute to the majority of CFTR anion transport in airway epithelium.



2020 ◽  
Vol 45 (1) ◽  
Author(s):  
Sumona Karjee ◽  
Sunil Kumar Mukherjee
Keyword(s):  


2020 ◽  
Author(s):  
Vianney Poignavent ◽  
François Hoh ◽  
Guillaume Terral ◽  
Yang Yinshan ◽  
François-Xavier Gillet ◽  
...  

ABSTRACTThe Rice Yellow Mottle sobemovirus (RYMV) belongs to the most damaging pathogens devastating rice fields in Africa. P1, a key protein for RYMV, was reported as a potent RNAi suppressor counteracting RNA silencing in plant reporter systems. Here we describe the complete 3D structure and dynamics of P1. Its N-terminal region contains ZnF1, a structural CCCC-type zinc finger strongly affine to zinc and a prominent short helix, rendering this region poorly amenable to structural changes. P1 C-terminal region contains ZnF2, an atypical HCHC-type ZnF that does not belong to any existing class of Zn finger proteins. ZnF2 appeared much less affine to zinc and more sensitive to oxidizing environments than ZnF1, and may serve as a sensor of plant redox status. The structure helped us to identify key residues essential for RYMV infectivity and spread in rice tissues through their participation in P1 oligomerization and folding. Altogether, our results provide the first complete structure of an antiviral silencing suppressor encoded by a virus infecting rice and highlight P1 structural and dynamical properties that may serve RYMV functions to infect and invade its host plant.



2019 ◽  
Vol 20 (4) ◽  
pp. 471-477 ◽  
Author(s):  
Xian Zhang ◽  
Lihua Kang ◽  
Qi Zhang ◽  
Qiqi Meng ◽  
Yafei Pan ◽  
...  


2019 ◽  
Vol 116 (48) ◽  
pp. 24296-24302 ◽  
Author(s):  
Alfred W. Bronkhorst ◽  
Rob Vogels ◽  
Gijs J. Overheul ◽  
Bas Pennings ◽  
Valérie Gausson-Dorey ◽  
...  

Coevolution of viruses and their hosts may lead to viral strategies to avoid, evade, or suppress antiviral immunity. An example is antiviral RNA interference (RNAi) in insects: the host RNAi machinery processes viral double-stranded RNA into small interfering RNAs (siRNAs) to suppress viral replication, whereas insect viruses encode suppressors of RNAi, many of which inhibit viral small interfering RNA (vsiRNA) production. Yet, many studies have analyzed viral RNAi suppressors in heterologous systems, due to the lack of experimental systems to manipulate the viral genome of interest, raising questions about in vivo functions of RNAi suppressors. To address this caveat, we generated an RNAi suppressor-defective mutant of invertebrate iridescent virus 6 (IIV6), a large DNA virus in which we previously identified the 340R protein as a suppressor of RNAi. Loss of 340R did not affect vsiRNA production, indicating that 340R binds siRNA duplexes to prevent RNA-induced silencing complex assembly. Indeed, vsiRNAs were not efficiently loaded into Argonaute 2 during wild-type IIV6 infection. Moreover, IIV6 induced a limited set of mature microRNAs in a 340R-dependent manner, most notably miR-305–3p, which we attribute to stabilization of the miR-305–5p:3p duplex by 340R. The IIV6 340R deletion mutant did not have a replication defect in cells, but was strongly attenuated in adult Drosophila. This in vivo replication defect was completely rescued in RNAi mutant flies, indicating that 340R is a bona fide RNAi suppressor, the absence of which uncovers a potent antiviral immune response that suppresses virus accumulation ∼100-fold. Together, our work indicates that viral RNAi suppressors may completely mask antiviral immunity.



2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Jeffrey J. Hodgson ◽  
Luke W. Wenger ◽  
Rollie J. Clem ◽  
A. Lorena Passarelli

Abstract Prior studies have suggested that insect DNA viruses are negatively affected by dicer-2-mediated RNA interference (RNAi). To examine this further, we utilized an in vitro assay to measure dicer activity in lepidopteran and dipteran cells, combined with baculoviruses expressing the RNAi suppressor B2 from Flock House virus or Aedes aegypti dicer-2 (Aedicer-2) using a constitutive heat shock promoter. Addition of cell lysates containing baculovirus-expressed B2 to lysates from dipteran (S2, Aag2) or lepidopteran (Sf9) cells inhibited endogenous dicer activity in a dose-dependent manner, while expression of Aedicer-2 restored siRNA production in Ae. albopictus C6/36 cells, which are dicer-2 defective. However, B2 expression from the constitutive heat shock promoter had no impact on baculovirus replication or virulence in cell lines or larvae that were either highly permissive (Trichoplusia ni) or less susceptible (Spodoptera frugiperda) to infection. We determined that this constitutive level of B2 expression had little to no ability to suppress dicer activity in cell lysates, but higher expression of B2, following heat shock treatment, inhibited dicer activity in all cells tested. Thus, we cannot rule out the possibility that optimized expression of B2 or other RNAi suppressors may increase baculovirus replication and expression of heterologous proteins by baculoviruses.



2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Susan Schuster ◽  
Gijs J. Overheul ◽  
Lisa Bauer ◽  
Frank J. M. van Kuppeveld ◽  
Ronald P. van Rij

Abstract RNA interference (RNAi) has strong antiviral activity in a range of animal phyla, but the extent to which RNAi controls virus infection in chordates, and specifically mammals remains incompletely understood. Here we analyze the antiviral activity of RNAi against a number of positive-sense RNA viruses using Argonaute-2 deficient human cells. In line with absence of virus-derived siRNAs, Sindbis virus, yellow fever virus, and encephalomyocarditis virus replicated with similar kinetics in wildtype cells and Argonaute-2 deficient cells. Coxsackievirus B3 (CVB3) carrying mutations in the viral 3A protein, previously proposed to be a virus-encoded suppressor of RNAi in another picornavirus, human enterovirus 71, had a strong replication defect in wildtype cells. However, this defect was not rescued in Argonaute-2 deficient cells, arguing against a role of CVB3 3A as an RNAi suppressor. In agreement, neither infection with wildtype nor 3A mutant CVB3 resulted in small RNA production with the hallmarks of canonical vsiRNAs. Together, our results argue against strong antiviral activity of RNAi under these experimental conditions, but do not exclude that antiviral RNAi may be functional under other cellular, experimental, or physiological conditions in mammals.



2019 ◽  
Vol 116 (6) ◽  
pp. 2274-2281 ◽  
Author(s):  
Ida Bagus Andika ◽  
Hideki Kondo ◽  
Nobuhiro Suzuki

In antiviral RNA interference (RNAi), Dicer plays a primary role in processing double-stranded RNA (dsRNA) molecules into small-interfering RNAs (siRNAs) that guide Argonaute effectors to posttranscriptional suppression of target viral genes. Here, we show a distinct role for Dicer in the siRNA-independent transcriptional induction of certain host genes upon viral infection in a filamentous fungus. Previous studies have shown that the two key players, dicer-like 2 (dcl2) and argonaute-like 2 (agl2), of antiviral RNAi in a phytopathogenic ascomycete,Cryphonectria parasitica, are highly transcriptionally induced upon infection with certain RNA mycoviruses, including the positive-stranded RNA hypovirus mutant lacking the RNAi suppressor (Cryphonectriahypovirus 1-Δp69, CHV1-Δp69). This induction is regulated by the Spt–Ada–Gcn5 acetyltransferase (SAGA) complex, a well-known transcriptional coactivator. The present study shows that diverse host genes, in addition todcl2andagl2, were up-regulated more than 10-fold by SAGA upon infection with CHV1-Δp69. Interestingly, DCL2, but not AGL2, was essential for SAGA-mediated global gene up-regulation. Moreover, deletion of certain virus-induced genes enhanced a CHV1-Δp69 symptom (growth rate) but not its accumulation. Constitutive, modest levels ofdcl2expression drastically reduced viral siRNA accumulation but were sufficient for full-scale up-regulation of host genes, suggesting that high induction ofdcl2and siRNA production are not essential for the transcriptional up-regulation function of DCL2. These data clearly demonstrate the dual functionality of DCL2: as a dsRNA-specific nuclease in posttranscriptional antiviral RNA silencing and as a key player in SAGA-mediated host gene induction, which independently represses viral replication and alleviates virus-induced symptom expression.



Sign in / Sign up

Export Citation Format

Share Document