beam angle optimization
Recently Published Documents


TOTAL DOCUMENTS

96
(FIVE YEARS 16)

H-INDEX

14
(FIVE YEARS 1)

Author(s):  
Bastiaan Wilhelmus Klaas Schipaanboord ◽  
Ben J M Heijmen ◽  
Sebastiaan Breedveld

Abstract Properly selected beam angles contribute to the quality of radiotherapy treatment plans. However, the Beam Angle Optimization (BAO) problem is difficult to solve to optimality due to its non-convex discrete nature with many local minima. In this study, we propose TBS-BAO, a novel approach for solving the BAO problem, and test it for non-coplanar robotic CyberKnife radiotherapy for prostate cancer. First, an ideal Pareto-optimal reference dose distribution is automatically generated using a priori multi-criterial fluence map optimization (FMO) to generate a plan that includes all candidate beams (total-beam-space, TBS). Then, this ideal dose distribution is reproduced as closely as possible in a subsequent segmentation/beam angle optimization step (SEG/BAO), while limiting the number of allowed beams to a user-selectable preset value. SEG/BAO aims at a close reproduction of the ideal dose distribution. For each of 33 prostate SBRT patients, 18 treatment plans with different pre-set numbers of allowed beams were automatically generated with the proposed TBS-BAO. For each patient, the TBS-BAO plans were then compared to a plan that was automatically generated with an alternative BAO method (Erasmus-iCycle) and to a high-quality manually generated plan. TBS-BAO was able to automatically generate plans with clinically feasible numbers of beams (∽25), with a quality highly similar to corresponding 91-beam ideal reference plans. Compared to the alternative Erasmus-iCycle BAO approach, similar plan quality was obtained for 25-beam segmented plans, while computation times were reduced from 10.7 hours to 4.8/1.5 hours, depending on the applied pencil-beam resolution in TBS-BAO. 25-beam TBS-BAO plans had similar quality as manually generated plans with on average 48 beams, while delivery times reduced from 22.3 to 18.4/18.1 min. TBS reference plans could effectively steer the discrete non-convex BAO.


Cancers ◽  
2021 ◽  
Vol 13 (22) ◽  
pp. 5790
Author(s):  
Shouyi Wei ◽  
Haibo Lin ◽  
J. Isabelle Choi ◽  
Charles B. Simone ◽  
Minglei Kang

Purpose: While transmission proton beams have been demonstrated to achieve ultra-high dose rate FLASH therapy delivery, they are unable to spare normal tissues distal to the target. This study aims to compare FLASH treatment planning using single energy Bragg peak proton beams versus transmission proton beams in lung tumors and to evaluate Bragg peak plan optimization, characterize plan quality, and quantify organ-at-risk (OAR) sparing. Materials and Methods: Both Bragg peak and transmission plans were optimized using an in-house platform for 10 consecutive lung patients previously treated with proton stereotactic body radiation therapy (SBRT). To bring the dose rate up to the FLASH-RT threshold, Bragg peak plans with a minimum MU/spot of 1200 and transmission plans with a minimum MU/spot of 400 were developed. Two common prescriptions, 34 Gy in 1 fraction and 54 Gy in 3 fractions, were studied with the same beam arrangement for both Bragg peak and transmission plans (n = 40 plans). RTOG 0915 dosimetry metrics and dose rate metrics based on different dose rate calculations, including average dose rate (ADR), dose-averaged dose rate (DADR), and dose threshold dose rate (DTDR), were investigated. We then evaluated the effect of beam angular optimization on the Bragg peak plans to explore the potential for superior OAR sparing. Results: Bragg peak plans significantly reduced doses to several OAR dose parameters, including lung V7.4Gy and V7Gy by 32.0% (p < 0.01) and 30.4% (p < 0.01) for 34Gy/fx plans, respectively; and by 40.8% (p < 0.01) and 41.2% (p < 0.01) for 18Gy/fx plans, respectively, compared with transmission plans. Bragg peak plans have ~3% less in DADR and ~10% differences in mean OARs in DTDR and DADR relative to transmission plans due to the larger portion of lower dose regions of Bragg peak plans. With angular optimization, optimized Bragg peak plans can further reduce the lung V7Gy by 20.7% (p < 0.01) and V7.4Gy by 19.7% (p < 0.01) compared with Bragg peak plans without angular optimization while achieving a similar 3D dose rate distribution. Conclusion: The single-energy Bragg peak plans achieve superior dosimetry performances in OARs to transmission plans with comparable dose rate performances for lung cancer FLASH therapy. Beam angle optimization can further improve the OAR dosimetry parameters with similar 3D FLASH dose rate coverage.


Cancers ◽  
2021 ◽  
Vol 13 (22) ◽  
pp. 5683
Author(s):  
Kristine Fjellanger ◽  
Liv Bolstad Hysing ◽  
Ben J. M. Heijmen ◽  
Helge Egil Seime Pettersen ◽  
Inger Marie Sandvik ◽  
...  

In this study, the novel iCE radiotherapy treatment planning system (TPS) for automated multi-criterial planning with integrated beam angle optimization (BAO) was developed, and applied to optimize organ at risk (OAR) sparing and systematically investigate the impact of beam angles on radiotherapy dose in locally advanced non-small cell lung cancer (LA-NSCLC). iCE consists of an in-house, sophisticated multi-criterial optimizer with integrated BAO, coupled to a broadly used commercial TPS. The in-house optimizer performs fluence map optimization to automatically generate an intensity-modulated radiotherapy (IMRT) plan with optimal beam angles for each patient. The obtained angles and dose-volume histograms are then used to automatically generate the final deliverable plan with the commercial TPS. For the majority of 26 LA-NSCLC patients, iCE achieved improved heart and esophagus sparing compared to the manually created clinical plans, with significant reductions in the median heart Dmean (8.1 vs. 9.0 Gy, p = 0.02) and esophagus Dmean (18.5 vs. 20.3 Gy, p = 0.02), and reductions of up to 6.7 Gy and 5.8 Gy for individual patients. iCE was superior to automated planning using manually selected beam angles. Differences in the OAR doses of iCE plans with 6 beams compared to 4 and 8 beams were statistically significant overall, but highly patient-specific. In conclusion, automated planning with integrated BAO can further enhance and individualize radiotherapy for LA-NSCLC.


Author(s):  
Tiago Ventura ◽  
Humberto Rocha ◽  
Brigida da Costa Ferreira ◽  
Joana Dias ◽  
Maria do Carmo Lopes

AbstractTwo methods for non-coplanar beam direction optimization, one for static beams and another for arc trajectories, were proposed for intracranial tumours. The results of the beam angle optimizations were compared with the beam directions used in the clinical plans. Ten meningioma cases already treated were selected for this retrospective planning study. Algorithms for non-coplanar beam angle optimization (BAO) and arc trajectory optimization (ATO) were used to generate the corresponding plans. A plan quality score, calculated by a graphical method for plan assessment and comparison, was used to guide the beam angle optimization process. For each patient, the clinical plans (CLIN), created with the static beam orientations used for treatment, and coplanar VMAT approximated plans (VMAT) were also generated. To make fair plan comparisons, all plan optimizations were performed in an automated multicriteria calculation engine and the dosimetric plan quality was assessed. BAO and ATO plans presented, on average, moderate global plan score improvements over VMAT and CLIN plans. Nevertheless, while BAO and CLIN plans assured a more efficient OARs sparing, the ATO and VMAT plans presented a higher coverage and conformity of the PTV. Globally, all plans presented high-quality dose distributions. No statistically significant quality differences were found, on average, between BAO, ATO and CLIN plans. However, automated plan solution optimizations (BAO or ATO) may improve plan generation efficiency and standardization. In some individual patients, plan quality improvements were achieved with ATO plans, demonstrating the possible benefits of this automated optimized delivery technique.


2021 ◽  
Vol 11 ◽  
Author(s):  
Wonjoong Cheon ◽  
Sang Hee Ahn ◽  
Seonghoon Jeong ◽  
Se Byeong Lee ◽  
Dongho Shin ◽  
...  

To automatically identify optimal beam angles for proton therapy configured with the double-scattering delivery technique, a beam angle optimization method based on a convolutional neural network (BAODS-Net) is proposed. Fifty liver plans were used for training in BAODS-Net. To generate a sequence of input data, 25 rays on the eye view of the beam were determined per angle. Each ray collects nine features, including the normalized Hounsfield unit and the position information of eight structures per 2° of gantry angle. The outputs are a set of beam angle ranking scores (Sbeam) ranging from 0° to 359°, with a step size of 1°. Based on these input and output designs, BAODS-Net consists of eight convolution layers and four fully connected layers. To evaluate the plan qualities of deep-learning, equi-spaced, and clinical plans, we compared the performances of three types of loss functions and performed K-fold cross-validation (K = 5). For statistical analysis, the volumes V27Gy and V30Gy as well as the mean, minimum, and maximum doses were calculated for organs-at-risk by using a paired-samples t-test. As a result, smooth-L1 loss showed the best optimization performance. At the end of the training procedure, the mean squared errors between the reference and predicted Sbeam were 0.031, 0.011, and 0.004 for L1, L2, and smooth-L1 loss, respectively. In terms of the plan quality, statistically, PlanBAO has no significant difference from PlanClinic (P &gt;.05). In our test, a deep-learning based beam angle optimization method for proton double-scattering treatments was developed and verified. Using Eclipse API and BAODS-Net, a plan with clinically acceptable quality was created within 5 min.


2021 ◽  
Vol 161 ◽  
pp. S217-S219
Author(s):  
B. Schipaanboord ◽  
B. Heijmen ◽  
S. Breedveld

2021 ◽  
Vol 11 ◽  
Author(s):  
Abdul Wahab M. Sharfo ◽  
Linda Rossi ◽  
Maarten L. P. Dirkx ◽  
Sebastiaan Breedveld ◽  
Shafak Aluwini ◽  
...  

PurposeEnhance rectum and bladder sparing in prostate SBRT with minimum increase in treatment time by complementing dual-arc coplanar VMAT with a two-beam non-coplanar IMRT class solution (CS).MethodsFor twenty patients, an optimizer for automated multi-criterial planning with integrated beam angle optimization (BAO) was used to generate dual-arc VMAT plans, supplemented with five non-coplanar IMRT beams with individually optimized orientations (VMAT+5). In all plan generations, reduction of high rectum dose had the highest priority after obtaining adequate PTV coverage. A CS with two most preferred directions in VMAT+5 and largest rectum dose reductions compared to dual-arc VMAT was then selected to define VMAT+CS. VMAT+CS was compared with automatically generated i) dual-arc coplanar VMAT plans (VMAT), ii) VMAT+5 plans, and iii) IMRT plans with 30 patient-specific non-coplanar beam orientations (30-NCP). Plans were generated for a 4 x 9.5 Gy fractionation scheme. Differences in PTV doses, healthy tissue sparing, and computation and treatment delivery times were quantified.ResultsFor equal PTV coverage, VMAT+CS, consisting of dual-arc VMAT supplemented with two fixed, non-coplanar IMRT beams with fixed Gantry/Couch angles of 65°/30° and 295°/-30°, significantly reduced OAR doses and the dose bath, compared to dual-arc VMAT. Mean relative differences in rectum Dmean, D1cc, V40GyEq and V60GyEq were 19.4 ± 10.6%, 4.2 ± 2.7%, 34.9 ± 20.3%, and 39.7 ± 23.2%, respectively (all p&lt;0.001). There was no difference in bladder D1cc, while bladder Dmean reduced by 17.9 ± 11.0% (p&lt;0.001). Also, the clinically evaluated urethra D5%, D10%, and D50% showed small, but statistically significant improvements. All patient VX with X = 2, 5, 10, 20, and 30 Gy were reduced with VMAT+CS, with a maximum relative reduction for V10Gy of 19.0 ± 7.3% (p&lt;0.001). Total delivery times with VMAT+CS only increased by 1.9 ± 0.7 min compared to VMAT (9.1 ± 0.7 min). The dosimetric quality of VMAT+CS plans was equivalent to VMAT+5, while optimization times were reduced by a factor of 25 due to avoidance of individualized BAO. Compared to VMAT+CS, the 30-NCP plans were only favorable in terms of dose bath, at the cost of much enhanced optimization and delivery times.ConclusionsThe proposed two-beam non-coplanar class solution to complement coplanar dual-arc VMAT resulted in substantial plan quality improvements for OARs (especially rectum) and reduced irradiated patient volumes with minor increases in treatment delivery times.


2021 ◽  
Vol 11 ◽  
Author(s):  
Yu-Jen Wang ◽  
Jia-Sheng Yao ◽  
Feipei Lai ◽  
Jason Chia-Hsien Cheng

PurposeBeam angle optimization is a critical issue for modern radiotherapy (RT) and is a challenging task, especially for large body sizes and noncoplanar designs. Noncoplanar RT techniques may have dosimetric advantages but increase the risk of mechanical collision. We propose a software solution to accurately predict colliding/noncolliding configurations for coplanar and noncoplanar beams.Materials and MethodsIndividualized software models for two different linear accelerators were built to simulate noncolliding gantry orientations for phantom/patient subjects. The sizes and shapes of the accelerators were delineated based on their manuals and on-site measurements. The external surfaces of the subjects were automatically contoured based on computed tomography (CT) simulations. An Alderson Radiation Therapy phantom was used to predict the accuracy of spatial collision prediction by the software. A gantry collision problem encountered by one patient during initial setup was also used to test the validity of the software. Results: In the comparison between the software estimates and on-site measurements, the noncoplanar collision angles were all predicted within a 5-degree difference in gantry position. The confusion matrix was calculated for each of the two empty accelerator models, and the accuracies were 98.7% and 97.3%. The true positive rates were 97.7% and 96.9%, while the true negative rates were 99.8% and 97.9%, respectively. For the phantom study, the collision angles were predicted within a 5-degree difference. The software successfully predicted the collision problem encountered by the breast cancer patient in the initial setup position and generated shifted coordinates that were validated to correspond to a noncolliding geometry.ConclusionThe developed software effectively and accurately predicted collisions for accelerator-only, phantom, and patient setups. This software may help prevent collisions and expand the range of spatially applicable beam angles.


Sign in / Sign up

Export Citation Format

Share Document