brain ischemic injury
Recently Published Documents


TOTAL DOCUMENTS

42
(FIVE YEARS 9)

H-INDEX

14
(FIVE YEARS 2)

2021 ◽  
Author(s):  
Yi Li ◽  
Xiaotian Liu ◽  
Peilin Zhang ◽  
Yuchen Li ◽  
Mengru Sun ◽  
...  

Abstract Background: Zonula occludens-1 (ZO-1) protein ensures cerebrovascular integrity against brain ischemic injury. Hydroxysafflor yellow A (HSYA) is a major ingredient of safflower (Carthamus tinctorius L.) with anti-oxidative activity. Because conventional ROS scavengers display poor reactivity with endogenous ROS, this study investigated whether HSYA protected ZO-1 by targeting the enzymes responsible for ROS generation.Methords: Photothrombotic stroke model was prepared in mice to evaluate the protective effect of HSYA on cerebrovascular endothelium. The molecular regulation was investigated in cultured cerebral microvascular endothelial cells (bEnd.3 cells).Results: Oral administration of HSYA (50 mg/kg) reduced cerebral vascular leakage with ZO-1 protection in mice after stroke, largely due to suppression of ROS-associated inflammation. In LPS-stimulated bEnd.3 cells, HSYA increased the ratio of NAD+/NADH to restore Sirt1 induction, which bound to Von Hippel-Lindau (VHL) to ensure HIF-1α protein degradation. Although both NOX1 and NOX2 isoforms were inducible in endothelial cells, we identified NOX2 as the driving force of ROS production. Chromatin immunoprecipitation and luciferase report gene assay revealed that HIF-1α transcriptionally regulated p47phox and Nox2 subunits for the assembly of NOX2 complex, which was blocked by HSYA treatment, largely by reducing HIF-1α accumulation. Inflammation-associated lipid peroxidation impaired ZO-1 protein, but HSYA treatment attenuated carbonyl modification and thus prevented ZO-1 protein from 20S proteasome-mediated degradation, eventually protecting endothelial integrity. In microvascular ZO-1 deficient mice, we further confirmed that HSYA protected cerebrovascular integrity and attenuated ischemic injury dependent on ZO-1 protection. Conclusions: HSYA blocked HIF-1α/NOX2 signaling cascades to protect ZO-1 from proteasomal degradation, suggesting that targeting NOX2 in endothelium is a potential therapeutic strategy to protect against ischemic brain injury.


2021 ◽  
Vol 65 (3) ◽  
Author(s):  
Cheng Chen ◽  
Yan Huang ◽  
Pingping Xia ◽  
Fan Zhang ◽  
Longyan Li ◽  
...  

Individuals with diabetes are exposed to a higher risk of perioperative stroke than non-diabetics mainly due to persistent hyperglycemia. LncRNA Meg3 has been considered as an important mediator in regulating ischemic stroke. However, the functional and regulatory roles of Meg3 in diabetic brain ischemic injury remain unclear. In this study, rat brain microvascular endothelial cells (RBMVECs) were exposed to 6 h of oxygen and glucose deprivation (OGD), and subsequent reperfusion via incubating cells with glucose of various high concentrations for 24 h to imitate in vitro diabetic brain ischemic injury. It was shown that the marker events of ferroptosis and increased Meg3 expression occurred after the injury induced by OGD combined with hyperglycemia. However, all ferroptotic events were reversed with the treatment of Meg3-siRNA. Moreover, in this in vitro model, p53 was also characterized as a downstream target of Meg3. Furthermore, p53 knockdown protected RBMVECs against OGD + hyperglycemic reperfusion-induced ferroptosis, while the overexpression of p53 exerted opposite effects, implying that p53 served as a positive regulator of ferroptosis. Additionally, the overexpression or knockdown of p53 significantly modulated GPX4 expression in RBMVECs exposed to the injury induced by OGD combined with hyperglycemic treatment. Furthermore, GPX4 expression was suppressed again after the reintroduction of p53 into cells silenced by Meg3. Finally, chromatin immunoprecipitation assay uncovered that p53 was bound to GPX4 promoter. Altogether, these data revealed that, by modulating GPX4 transcription and expression, the Meg3-p53 signaling pathway mediated the ferroptosis of RBMVECs upon injury induced by OGD combined with hyperglycemic reperfusion.


Molecules ◽  
2021 ◽  
Vol 26 (15) ◽  
pp. 4592
Author(s):  
Joon Ha Park ◽  
Jong Dai Kim ◽  
Tae-Kyeong Lee ◽  
Xionggao Han ◽  
Hyejin Sim ◽  
...  

Korean red pine (Pinus densiflora) belongs to the Genus Pinus, and its bark contains a great amount of naturally occurring phenolic compounds. Until now, few studies have been conducted to assess the neuroprotective effects of Pinus densiflora bark extract against brain ischemic injury. The aim of this study was to investigate the neuroprotective effects of pre-treatment with the extract in the hippocampus following 5-min transient forebrain ischemia in gerbils. Furthermore, this study examined the anti-inflammatory effect as a neuroprotective mechanism of the extract. Pinus densiflora bark was extracted by pure water (100 °C), and this extract was quantitatively analyzed and contained abundant polyphenols, flavonoids, and proanthocyanidins. The extract (25, 50, and 100 mg/kg) was orally administered once a day for seven days before the ischemia. In the gerbil hippocampus, death of the pyramidal neurons was found in the subfield cornu ammonis 1 (CA1) five days after the ischemia. This death was significantly attenuated by pre-treatment with 100 mg/kg, not 25 or 50 mg/kg, of the extract. The treatment with 100 mg/kg of the extract markedly inhibited the activation of microglia (microgliosis) and significantly decreased the expression of pro-inflammatory cytokines (interleukin 1β and tumor necrosis factor α). In addition, the treatment significantly increased anti-inflammatory cytokines (interleukin 4 and interleukin 13). Taken together, this study clearly indicates that pre-treatment with 100 mg/kg of Pinus densiflora bark extract in gerbils can exert neuroprotection against brain ischemic injury by the attenuation of neuroinflammatory responses.


2021 ◽  
Vol 91 ◽  
pp. 89-104
Author(s):  
Amanda Costa ◽  
Verena Haage ◽  
Seulkee Yang ◽  
Stephanie Wegner ◽  
Burcu Ersoy ◽  
...  

2020 ◽  
Author(s):  
Viscardo P. Fabbri ◽  
Maria P. Foschini ◽  
Tiziana Lazzarotto ◽  
Liliana Gabrielli ◽  
Giovanna Cenacchi ◽  
...  

2020 ◽  
Vol 8 (21) ◽  
pp. 1344-1344
Author(s):  
Li-Xuan Yang ◽  
Fang-Yu Chen ◽  
Hai-Long Yu ◽  
Pin-Yi Liu ◽  
Xin-Yu Bao ◽  
...  

2020 ◽  
Author(s):  
Cheng Chen ◽  
Yan Huang ◽  
Pingping Xia ◽  
Fan Zhang ◽  
Longyan Li ◽  
...  

Abstract Background Individuals with diabetes are exposed to a higher risk of perioperative stroke than non-diabetics mainly due to persistent hyperglycemia. lncRNA-MEG3 (long non-coding RNA maternally expressed gene 3) has been considered as an important mediator in regulating ischemic stroke. However, the functional and regulatory roles of lncRNA-MEG3 in diabetic brain ischemic injury remain unclear. Results In this study, RBMVECs (the rat brain microvascular endothelial cells) were exposed to 6 h of OGD (oxygen and glucose deprivation), and subsequent reperfusion via incubating cells with glucose of various high concentrations for 24 h to imitate in vitro diabetic brain ischemic injury. It was shown that the marker events of ferroptosis and increased lncRNA-MEG3 expression occurred after the injury induced by OGD combined with hyperglycemic treatment. However, all ferroptotic events were reversed with the treatment of MEG3-siRNA. Moreover, in this in vitro model, p53 was also characterized as a downstream target of lncRNA-MEG3. Furthermore, p53 knockdown protected RBMVECs against OGD + hyperglycemic reperfusion-induced ferroptosis, while the overexpression of p53 exerted opposite effects, implying that p53 served as a positive regulator of ferroptosis. Additionally, the overexpression or knockdown of p53 significantly modulated GPX4 expression in RBMVECs exposed to the injury induced by OGD combined with hyperglycemic treatment. Furthermore, GPX4 expression was suppressed again after the introduction of p53 into cells silenced by lncRNA-MEG3. Finally, ChIP assay uncovered that p53 was bound to GPX4 promoter. Conclusions Altogether, these data revealed that, by modulating GPX4 transcription and expression, the lncRNA-MEG3-p53 signaling pathway mediated the ferroptosis of RBMVECs upon injury induced by OGD combined with hyperglycemic treatment.


Stroke ◽  
2019 ◽  
Vol 50 (Suppl_1) ◽  
Author(s):  
Longlong Luo ◽  
Yongfang Li ◽  
Fang Yuan ◽  
Liping Wang ◽  
Wanlu Li ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document