scholarly journals Numerical Simulation Analysis Mathematics of Fluid Mechanics for Semiconductor Circuit Breaker

2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Danjuan Liu ◽  
Wei He

Abstract The paper derives the current-voltage relationship in the semiconductor circuit breaker based on the equation of fluid mechanics which has application for safe and water access. Then, the paper proposes a Newton iterative method based on the finite element analysis method to solve the nonlinear algebraic equation relationship in the semiconductor circuit breaker. At the same time, the paper constructed a coupled numerical model based on the hydrodynamic equations and applied it to the pulse current prediction. Experiments have proved that the algorithm can realize large-scale open-circuit switching current forecast, and the algorithm has high efficiency and accuracy.

Materials ◽  
2021 ◽  
Vol 14 (15) ◽  
pp. 4143
Author(s):  
Youzheng Cui ◽  
Shenrou Gao ◽  
Fengjuan Wang ◽  
Qingming Hu ◽  
Cheng Xu ◽  
...  

Compared with other materials, high-volume fraction aluminum-based silicon carbide composites (hereinafter referred to as SiCp/Al) have many advantages, including high strength, small change in the expansion coefficient due to temperature, high wear resistance, high corrosion resistance, high fatigue resistance, low density, good dimensional stability, and thermal conductivity. SiCp/Al composites have been widely used in aerospace, ordnance, transportation service, precision instruments, and in many other fields. In this study, the ABAQUS/explicit large-scale finite element analysis platform was used to simulate the milling process of SiCp/Al composites. By changing the parameters of the tool angle, milling depth, and milling speed, the influence of these parameters on the cutting force, cutting temperature, cutting stress, and cutting chips was studied. Optimization of the parameters was based on the above change rules to obtain the best processing combination of parameters. Then, the causes of surface machining defects, such as deep pits, shallow pits, and bulges, were simulated and discussed. Finally, the best cutting parameters obtained through simulation analysis was the tool rake angle γ0 = 5°, tool clearance angle α0 = 5°, corner radius r = 0.4 mm, milling depth ap = 50 mm, and milling speed vc= 300 m/min. The optimal combination of milling parameters provides a theoretical basis for subsequent cutting.


2012 ◽  
Vol 522 ◽  
pp. 245-248 ◽  
Author(s):  
Hai Tao Liu ◽  
Ya Zhou Sun ◽  
De Bin Shan ◽  
Yan Quan Geng

There are lots of titanium alloy parts which have large-scale micro-structures in astronautic structure and medical implants, so the micro milling becomes one of the effective processing methods in getting the surface micro-structure. Because the titanium alloy has high caking property in processing, it needs a research on the cutting heat and force in order to get better machining precision and surface quality. According to the finite element theory in elastic and plasticity, the influence of cutting speed to the cutting heat and force is got by finite element simulation analysis to the titanium material TC4 in cutting process. It can get the simulation results of cutting heat and force in the micro milling processing by finite element analysis, and then compared, the basic influence which the cutting speed to the cutting heat and force is got. The correctness of the result is checked through cutting experiments.


2011 ◽  
Vol 121-126 ◽  
pp. 4523-4527
Author(s):  
Yu Yan Liu ◽  
Yan Wang ◽  
Lin Chen ◽  
Ge Li ◽  
Jian Guo Wang

The paper established U75V 100-meter rail 3-D transient non-liner finite element analysis model about U75V 100-meter rail by using the large-scale non-liner finite element analysis software ABAQUS. By analyzing the different positions in the section of the temperature variation, the changes of bending degree and the residual stress variation after the bending deformation have changed. Based on the 100-meter straight rail in natural cooling under the cooling process, simulation results showed that in the cooling process, deflection change with time mainly divided into four stages; In consideration of the friction effect, the flat rail cold curve for its deformation among roughly flat, the curve about either ends, the scope for bending is 18 meters, the maximal displacement is 1.88 meters while the flat rail occured end colding.


2013 ◽  
Vol 788 ◽  
pp. 508-510
Author(s):  
Xing Hua Cheng ◽  
Fu Ma

This article research frame supported shear wall structure Beam-type Transfer layer at the supporting wall (across full) shape and the supporting column two structure forms, in the same form of vertical uniformly distributed load, the stress distribution variation trend and characteristics of the analyzed and discussed. Using large-scale finite element analysis software ANSYS to two different Beam-type Transfer structure of the nonlinear simulation analysis, combined with the stress nephogram of X to the analysis of two kinds of structure forms of the transfer beam and upper wall and the frame work characteristics [. The results of the study show that: In terms of the vertical stress, wall shape across the full shear wall in the stress of the beam structure performance is better, Column will produce large stress in the beam. Shear wall and stress of the transfer beam work together to transform beam has a great influence.


2015 ◽  
Vol 2015 ◽  
pp. 1-8 ◽  
Author(s):  
Xuanhua Fan ◽  
Keying Wang ◽  
Shifu Xiao ◽  
Qingkai Liu ◽  
Zeyao Mo

In the development of large and complex equipment, a large-scale finite element analysis (FEA) with high efficiency is often strongly required. This paper provides some progress on parallel solution of large-scale modal and vibration FE problems. Some predominant algorithms for modal and vibration analysis are firstly reviewed and studied. Based on the newly developed JAUMIN framework, the corresponding procedures are developed and integrated to form a parallel modal and vibration solution system; the details of parallel implementation are given. Numerical experiments are carried out to evaluate the parallel scalability of our procedures, and the results show that the maximum solution scale attains ninety million degrees of freedom (DOFs) and the maximum parallel CPU processors attain 8192 with favorable computing efficiency.


2010 ◽  
Vol 42 ◽  
pp. 453-456
Author(s):  
Yong Gang Yan ◽  
Yan Qin Li ◽  
Zhan Kui Wang

Coordinate measuring machine (CMM) is a large-scale geometrical detecting instrument. It is of high accuracy, high efficiency simple operation and automation. So, it can ensure the product quality for modern mechanical manufacture industry, and is widely used in the industry such as aircraft, automobile, military and national defense. However, it does not meet gradually the requirement of modern industry because of its measuring accuracy. How to monitor geometrical error rapidly and high accurately is a key research project. To solve the problem, some studies have been carried out. In this paper, a coordinate measuring machine was firstly designed by modern design method. Three dimensional model is built using PRO/E software. And some key components were optimized by using finite element analysis method. The simulating results show that the size and structure of the designed coordinate measuring machines are optimized and improved relate to previous CMM. This study will play an important instructing role for us in studying a novel CMM.


2021 ◽  
Vol 2113 (1) ◽  
pp. 012009
Author(s):  
Ziyang Ding ◽  
Lingfeng Xu ◽  
Ming Gao ◽  
Guoqing Wang

Abstract Most of Chinese aquacultural products rely on artificial nets to catch in 2020. Fish suction pump can replace artificial net, is an important mechanical equipment of fish breeding industry. The development of fish suction pump is relatively backward and the level of automation is still to be improved, which is not conducive to the large-scale and rapid development of aquaculture in various countries. This paper designs a single tank vacuum suction fish pump, the suction fish pump mainly uses the tank and the air pressure difference, through the automatic control system on the suction fish pump and each stage of the control, relying on the gravity of the mixture of fish and water to release fish. In this paper, fluent was used to conduct simulation analysis on the flow diagram of fish-water mixture inhaled at work, and the flow diagram and velocity vector diagram of the internal flow field were obtained. The results show that the vacuum fish suction pump can effectively reduce the fish collision damage. The vacuum fish suction pump designed in this paper can effectively complete the fishing work of cultured fish, with the characteristics of high efficiency and low damage, which can provide theoretical reference for the design of vacuum fish suction pump in the future.


2013 ◽  
Vol 671-674 ◽  
pp. 1267-1271
Author(s):  
Bao Shi Wang ◽  
Jun Qing Liu ◽  
Peng Fei Pang

In recent years, the phenomenon of vehicle overload in highway transportation is more and more serious. The three-dimensional dynamic FEM was adopted and a three-dimensional simulative model for asphalt pavement with subgrade based on cross-anisotropy under moving load was established by the large-scale finite element analysis software ABAQUS. The response of the stress in the pavement structure was got by using ABAQUS/Standard code. During deceleration, The simulation analysis results under the rated load were compared with those under the different overload ratio. The results show that, under moving load, the surface course of pavement is mainly in three dimension compressive stress state. The horizontal load caused by deceleration has a remarkable effect on the longitudinal stress and the horizontal shearing stress. The stress of the pavement structure under overload is much greater than that caused by the rated load. And the greater the overload ratio, the greater the deviation between them.


2012 ◽  
Vol 204-208 ◽  
pp. 4396-4399 ◽  
Author(s):  
Guo Liang Tian ◽  
Yin Wang

Cement hydration heat temperature of the concrete could result thermal stress. Which is an important reason for the concrete structure’ cracks. The cracks could reduce the structure’ durability and structural stability. A spatial finite element model analysis on a mass concrete foundation board of a project was established using large-scale finite element analysis software. Temperature stress finite element analysis was carried on model. Numerical simulation analyzed the hydration heat of mass concrete construction phase and calculated the mass concrete’ temperature and stress distribution. Results of numerical simulation of crack control had certain guiding significance to mass concrete construction.


Author(s):  
M. Rezal ◽  
D. Ishak

Permanent magnet synchronous motor (PMSM) is the most reliable and efficient machine that widely used in robotics and automation, industrial applications, electric vehicles, home appliances, aircraft and aerospace technology due to its high efficiency, good dynamic performance and high torque density. In this paper, the influence of various types of winding configuration and different magnetization patterns in the performance of a five-phase PMSM is investigated. Three types of magnetization patterns such as radial magnetization (RM), parallel magnetization (PaM), and multi-segmented Halbach magnetization (SH) are applied to the five-phase 10-slot/4-pole PMSM during open-circuit and on-load conditions. A 2D finite element method (FEM) is intensively used in this investigation to model and predict the electromagnetic characteristics and performance of the PMSM. The detailed results from the finite-element analysis (FEA) on the cogging torque, induced back-emf, airgap flux density and electromagnetic torque are analysed. The induced back-emf of the machine is computed further into its harmonic distortions. Additionally, the skewing method for minimization of cogging torque of PMSM is proposed. From the results, it is observed that the five-phase, 10-slot/4-pole PMSM with double layer distributed winding and parallel magnetization gives the best machine performance.


Sign in / Sign up

Export Citation Format

Share Document