scholarly journals A Simple g-C3N4/TNTs Heterojunction for Improving the Photoelectrocatalytic Degradation of Methyl Orange

Author(s):  
Linsheng Zeng ◽  
Zichun He ◽  
Yongping Luo ◽  
Jitao Xu ◽  
Jiansheng Chen ◽  
...  

Abstract In this work, highly ordered titanium dioxide nanotube arrays (TNTs) were first prepared by anodic oxidation method. Then, g-C3N4/TNTs heterojunctions were prepared by ultrasonically loading graphitic carbon nitride (g-C3N4) onto the TNTs. The morphology and crystal structure of TNTs and g-C3N4/TNTs were characterized by SEM and XRD. The photoelectrocatalytic (PEC) degradation of methyl orange (MO) by TNTs and g-C3N4/TNTs was studied in a PEC degradation system. The photocatalytic (PC), electrocatalytic (EC), and PEC degradation properties were compared, and the effect of pollutant concentration on the degradation performance of the catalysts was analyzed. According to the experimental results, the degradation rate of MO with TNTs only reaches 65.1% after 120 min, while the degradation rate of MO with g-C3N4/TNTs reaches 84.6% in the same time. Due to the synergistic effect of light and electricity, the PEC degradation efficiency of the two catalysts is greater than the sum of PC and EC degradation, proving that g-C3N4/TNTs heterojunctions provide excellent PEC performance for the degradation of MO.

2011 ◽  
Vol 343-344 ◽  
pp. 216-221
Author(s):  
Jian Yu Gong ◽  
Chang Zhu Yang ◽  
Wen Hong Pu ◽  
Jing Dong Zhang

Nitrogen doped titanium dioxide nanoparticals (N-TiO2) were prepared by the sol-hydrothermal method using urea as N sources. SEM showed the sphericity of as-prepared nanoparticals. XRD indicated that N-TiO2 was anatase crystal after thermal treatment. While Na-chlorophyllin copper (Na-chl-Cu) was used as to sensitize the N-TiO2, the photocurrent of Na-chl-Cu/N-TiO2 was 50 ìA double than that of N-TiO2 under visible light illumination. Thus, the visible light photoelectrocatalytic degradation properties of Na-chl-Cu/N-TiO2 were investigated using methyl orange (MO) as the objective pollution. When 1.8 V anodic bias potential and visible light were simultaneously applied, the highest degradation efficiency of MO over the Na-chl-Cu/N-TiO2 was obtained.


2011 ◽  
Vol 230-232 ◽  
pp. 126-130
Author(s):  
Wen Jie Zhang ◽  
Ke Xin Li

PEG1000 was used as template to prepare porous TiO2 film by sol-gel method. The functions of applied potential and concentration of NaHCO3 to the photoelectrocatalytic degradation of methyl orange on porous and smooth TiO2 films were investigated. Methyl orange degradation rate has two optimal values at the applied potential of 0.8 V and 1.8 V. The addition of PEG may have negative effect on photoelectrocatalytic activity of TiO2 film. The degradation rate increases with increasing NaHCO3 concentration from 0 up to 0.05 mol/l, and then it declines after further increase of electrolyte concentration. After 100 min of reaction, the degradation rates on the films prepared without and with PEG addition are 63.78% and 65.22%, respectively.


2010 ◽  
Vol 26-28 ◽  
pp. 489-492
Author(s):  
Xuan Xiao ◽  
Jia Wei Bai ◽  
Wen Jie Zhang ◽  
Yuan Di Li

Photoelectrocatalytic (PEC) degradation efficiencies of a suspended TiO2 and Ti electrodes composite system in different ammonium salt solutions were investigated. Electrolyte type and concentration as well as the applied potential on the Ti electrodes had significant effects on photoelectrocatalytic degradation and electro-degradation efficiencies. PEC degradation and electro-degradation of methyl orange increased with increasing applied potential and electrolyte concentration. PEC degradation is much more powerful than electro-degradation. PEC degradation efficiency in (NH4)3PO4•3H2O solution is the highest 93.4%, whereas the efficiency in NH4Cl solution shows the worst 73.1%, which is even less than that of photocatalytic process alone. PEC degradation efficiencies in (NH4)2SO4 and NH4HCO3 solutions are 88.8% and 85.9% respectively, indicating no noticeable improvement compared with photocatalytic process.


2011 ◽  
Vol 4 (1) ◽  
pp. 171-177 ◽  
Author(s):  
Jianjun Liao ◽  
Shiwei Lin ◽  
Li Zhang ◽  
NengQian Pan ◽  
Xiankun Cao ◽  
...  

2012 ◽  
Vol 457-458 ◽  
pp. 521-524 ◽  
Author(s):  
Wen Jie Zhang ◽  
Qian Li ◽  
Hong Bo He

The functions of applied potential to the photoelectrocatalytic degradation process of methyl orange were investigated. When using 0.05 M NaCl and under different applied potentials, the degradation rate increased obviously with increasing applied potential. When the applied potential was between 0.6 V-1.0 V, the degradation rate was enhanced drastically. The detected current values got larger as the applied potential increased from 0 up to 1.2 V. There was no direct electro-degradation to the dye in the solution. The applied potential and the irradiated light had synergetic effect when they were applied to the solution at the same time. While after irradiation for 0 to 60 min, with the increasing reaction time, methyl orange absorption peak intensity shrank obviously. The azo and benzene groups in methyl orange degraded totally under photocatalytic process.


2017 ◽  
Vol 727 ◽  
pp. 374-380 ◽  
Author(s):  
Xiao Fei Qu ◽  
Jing Jun Yuan ◽  
Xi Da Deng ◽  
Yu Chen Hou ◽  
Yu Fei Wang ◽  
...  

In this paper, a simple, efficient and environmental friendly method was proposed to fabricate TiO2/CdS nanotube arrays. The composite nanotubes with a core-shell coaxial structure were fabricated via a simple method of liquid deposition and double diffusion using anodic aluminum oxide (AAO) templates. The photocatalytic properties of the nanotube arrays (TiO2, TiO2/CdS) were confirmed by the degradation of methyl orange (MO) under UV irradiation. Compared to bare TiO2 nanotube arrays, TiO2/CdS composite nanotube arrays showed improved photocatalytic performance: The degradation efficiency of TiO2/CdS and TiO2 nanotube arrays towards methyl orange was 65% and 39%, respectively.


2013 ◽  
Vol 726-731 ◽  
pp. 2449-2452 ◽  
Author(s):  
Yin Zhi Jiang ◽  
Yong Qiang Shi ◽  
Lian Zhu Tian ◽  
Huo Ying Xu

Six benzimidazole derivatives were synthesized and charactrized by IR spectra, 1H-NMR spectra and MS spectra. The coordination reaction of the derivatives with CuCl2. And six novel Cu (II) complexes with the derivatives were prepared and characterized by UV spectra, IR spectra and elemental analysis. The catalytic degradation of methyl orange aqueous solution was investigated using the complexes as catalysis in presence H2O2 by HPLC method and Vis-spectrophotometry. The result of characterization showed that there are four coordination sites around Cu (II) in all complexes, which are respectively occupied by one sulfur atom (from the derivative), one nitrogen atom (from the derivative), one oxygen atom ( from the OH-) and one chlor atom (from the Cl-). The degradation of methyl orange indicated that all the complexes show the properties of enzyme activity. And the main degradation products determined were hydroquinone and maleic acid.


2012 ◽  
Vol 624 ◽  
pp. 88-93 ◽  
Author(s):  
En Lei Qi ◽  
Ben Niu ◽  
Shi Lei Zhang ◽  
Jie Qiang Wang

CeO2 nanobundles were obtained by the microwave homogeneous precipitation method using cerium nitrate and urea as raw materials. Ag nanoparticles were obtained by the microwave solvolthermal method using silver nitrate, PVP and ethanol as raw materials. Nanostructured Ag/CeO2 was prepared by the impregnation method. The products were characterized by X-ray diffraction, SEM, TEM, UV-vis spectrum, BET. The photocatalytic properties of CeO2 and Ag/CeO2 nanomaterials were evaluated by degradation of methyl orange. The results show that the photocatalytic degradation of modified cerium oxide modified by nano silver on methyl orange is significantly improved. For the Ag (0.1 wt%)/CeO2 material, the degradation rate on methyl orange is up to 83.2% under visible light irradiation for 1h. The catalytic activity of nanostructured Ag (0.1 wt%)/CeO2 in dye decolorization is substantially higher than the standard reference TiO2 P25.


Sign in / Sign up

Export Citation Format

Share Document