radar polarimetry
Recently Published Documents


TOTAL DOCUMENTS

169
(FIVE YEARS 18)

H-INDEX

22
(FIVE YEARS 2)

Author(s):  
Avik Bhattacharya ◽  
Subhadip Dey ◽  
Alejandro C. Frery
Keyword(s):  

2021 ◽  
Vol 21 (23) ◽  
pp. 17291-17314
Author(s):  
Silke Trömel ◽  
Clemens Simmer ◽  
Ulrich Blahak ◽  
Armin Blanke ◽  
Sabine Doktorowski ◽  
...  

Abstract. Cloud and precipitation processes are still a main source of uncertainties in numerical weather prediction and climate change projections. The Priority Programme “Polarimetric Radar Observations meet Atmospheric Modelling (PROM)”, funded by the German Research Foundation (Deutsche Forschungsgemeinschaft, DFG), is guided by the hypothesis that many uncertainties relate to the lack of observations suitable to challenge the representation of cloud and precipitation processes in atmospheric models. Such observations can, however, at present be provided by the recently installed dual-polarization C-band weather radar network of the German national meteorological service in synergy with cloud radars and other instruments at German supersites and similar national networks increasingly available worldwide. While polarimetric radars potentially provide valuable in-cloud information on hydrometeor type, quantity, and microphysical cloud and precipitation processes, and atmospheric models employ increasingly complex microphysical modules, considerable knowledge gaps still exist in the interpretation of the observations and in the optimal microphysics model process formulations. PROM is a coordinated interdisciplinary effort to increase the use of polarimetric radar observations in data assimilation, which requires a thorough evaluation and improvement of parameterizations of moist processes in atmospheric models. As an overview article of the inter-journal special issue “Fusion of radar polarimetry and numerical atmospheric modelling towards an improved understanding of cloud and precipitation processes”, this article outlines the knowledge achieved in PROM during the past 2 years and gives perspectives for the next 4 years.


2021 ◽  
Author(s):  
Silke Trömel ◽  
Clemens Simmer ◽  
Ulrich Blahak ◽  
Armin Blanke ◽  
Florian Ewald ◽  
...  

Abstract. Cloud and precipitation processes are still the main source of uncertainties in numerical weather prediction and climate change projections. The Priority Program "Polarimetric Radar Observations meet Atmospheric Modelling (PROM)", funded by the German Research Foundation (Deutsche Forschungsgemeinschaft, DFG), is guided by the hypothesis, that many uncertainties relate to the lack of observations suitable to challenge the representation of cloud and precipitation processes in atmospheric models. Such observations can, however, nowadays be provided e.g. by the recently installed dual-polarization C band weather radar network of the German national meteorological service in synergy with cloud radars and other instruments at German supersites and similar national networks increasingly available worldwide. While polarimetric radars potentially provide valuable in-cloud information e.g. on hydrometeor type, quantity, and microphysical cloud and precipitation processes, and atmospheric models employ increasingly higher moment microphysical modules, still considerable knowledge gaps exist in the interpretation of the observations and large uncertainties in the optimal microphysics model process formulations. PROM is a coordinated interdisciplinary effort to intensify the use of polarimetric radar observations in data assimilation, which requires a thorough evaluation and improvement of parametrizations of moist processes in atmospheric models. As an overview article of the inter-journal special issue "Fusion of radar polarimetry and numerical atmospheric modelling towards an improved understanding of cloud and precipitation processes", it outlines the knowledge achieved in PROM during the past two years and gives perspectives for the next four years.


Author(s):  
Dipankar Mandal ◽  
Avik Bhattacharya ◽  
Yalamanchili Subrahmanyeswara Rao

2020 ◽  
Vol 56 (9) ◽  
pp. 916-926 ◽  
Author(s):  
V. G. Bondur ◽  
T. N. Chimitdorzhiev ◽  
A. V. Dmitriev ◽  
P. N. Dagurov ◽  
A. I. Zakharov ◽  
...  
Keyword(s):  

2020 ◽  
Author(s):  
Subhadip Dey ◽  
Avik Bhattacharya ◽  
Debanshu Ratha ◽  
Dipankar Mandal ◽  
Alejandro C. Frery

This manuscript was accepted for publication on IEEE Transactions on Geoscience and Remote Sensing.<br><br>Abstract: In radar polarimetry, incoherent target decomposition<br>techniques help extract scattering information from polarimetric<br>SAR data. This is achieved either by fitting appropriate scattering models or by optimizing the received wave intensity<br>through the diagonalization of the coherency (or covariance)<br>matrix. As such, the received wave information depends on<br>the received antenna configuration. Additionally, a polarimetric<br>descriptor that is independent of the received antenna configuration might provide additional information which is missed by the individual elements of the coherency matrix. This implies that existing target characterization techniques might neglect this information. In this regard, we suitably utilize the 2D and 3D Barakat degree of polarization which is independent of the received antenna configuration to obtain distinct polarimetric information for target characterization. In this study, we introduce new roll-invariant scattering-type parameters for both full-polarimetric (FP) and compact-polarimetric (CP) SAR data. These new parameters jointly use the information of the 2D and 3D Barakat degree of polarization and the elements of the coherency (or covariance) matrix. We use these new scattering type parameters, which provide equivalent information as the Cloude alpha for FP SAR data and the ellipticity parameter chi for CP SAR data, to characterize various targets adequately. Additionally, we appropriately utilize these new scattering-type parameters to obtain unique non-model based three-component scattering power decomposition techniques. We obtain the even-bounce, and the odd-bounce scattering powers by modulating the total polarized power by a proper geometrical factor derived using the new scattering-type parameters for FP and CP SAR data. The diffused scattering power is obtained as the depolarized fraction of the total power. Moreover, due to the nature of its formulation, the decomposition scattering powers are nonnegative and roll-invariant while the total power is conserved. The proposed method is both qualitatively and quantitatively assessed utilizing the L-band ALOS-2 and C-band Radarsat-2 FP and the associated simulated CP SAR data.


2020 ◽  
Author(s):  
Subhadip Dey ◽  
Avik Bhattacharya ◽  
Debanshu Ratha ◽  
Dipankar Mandal ◽  
Alejandro C. Frery

This manuscript was accepted for publication on IEEE Transactions on Geoscience and Remote Sensing.<br><br>Abstract: In radar polarimetry, incoherent target decomposition<br>techniques help extract scattering information from polarimetric<br>SAR data. This is achieved either by fitting appropriate scattering models or by optimizing the received wave intensity<br>through the diagonalization of the coherency (or covariance)<br>matrix. As such, the received wave information depends on<br>the received antenna configuration. Additionally, a polarimetric<br>descriptor that is independent of the received antenna configuration might provide additional information which is missed by the individual elements of the coherency matrix. This implies that existing target characterization techniques might neglect this information. In this regard, we suitably utilize the 2D and 3D Barakat degree of polarization which is independent of the received antenna configuration to obtain distinct polarimetric information for target characterization. In this study, we introduce new roll-invariant scattering-type parameters for both full-polarimetric (FP) and compact-polarimetric (CP) SAR data. These new parameters jointly use the information of the 2D and 3D Barakat degree of polarization and the elements of the coherency (or covariance) matrix. We use these new scattering type parameters, which provide equivalent information as the Cloude alpha for FP SAR data and the ellipticity parameter chi for CP SAR data, to characterize various targets adequately. Additionally, we appropriately utilize these new scattering-type parameters to obtain unique non-model based three-component scattering power decomposition techniques. We obtain the even-bounce, and the odd-bounce scattering powers by modulating the total polarized power by a proper geometrical factor derived using the new scattering-type parameters for FP and CP SAR data. The diffused scattering power is obtained as the depolarized fraction of the total power. Moreover, due to the nature of its formulation, the decomposition scattering powers are nonnegative and roll-invariant while the total power is conserved. The proposed method is both qualitatively and quantitatively assessed utilizing the L-band ALOS-2 and C-band Radarsat-2 FP and the associated simulated CP SAR data.


Synthetic aperture radar is used for polarimetric target identification. It is most prominent imaging radar. This radar covers the widest ranges of earth crust with high resolution images. It captures images day and night. It is suitable for any seasonal weather conditions. The polarization data contains information, on scattering mechanism related to different objects. The objects are land, ocean, glaceries, snow and dense forest which are natural distributed targets. By the use of scattering mechanism the different objects are classified. Scattering mechanism is measured by scattering elements of the matrix. The full polarization of synthetic aperture radar data classifies the obtained image. This paper analyses an entropy based target identification related to synthetic aperture radar polarimetry. The method is also the outcome of Eigen decomposition analysis. The paper also gives broader view of identification of target using physical property and analytical model. The method is helpful for system level design and scattering process considerations.


Atmosphere ◽  
2019 ◽  
Vol 10 (11) ◽  
pp. 714
Author(s):  
Bringi ◽  
Zrnic

The modern era of polarimetric radar begins with radiowave propagation research starting in the early 1970s with applications to measurement and modeling of wave attenuation in rain and depolarization due to ice particles along satellite–earth links. While there is a rich history of radar in meteorology after World War II, the impetus provided by radiowave propagation requirements led to high-quality antennas and feeds. Our journey starts by describing the key institutions and personnel responsible for development of weather radar polarimetry. The early period was dominated by circularly polarized radars for propagation research and at S band (frequency near 3 GHz) for hail detection. By the mid to late 70s, a paradigm shift occurred which led to the dominance of linear polarizations with applications to slant path attenuation prediction as well as estimation of rain rates and inferences of precipitation physics. The period from the early 1980s to 1995 can be considered as the “golden” period of rapid research that brought in meteorologists, cloud physicists, and hydrologists. This article describes the evolution of this technology from the vantage point of the authors. Their personal reflections and “behind the scenes” descriptions offer a glimpse into the inner workings at several key institutions which cannot be found elsewhere.


Sign in / Sign up

Export Citation Format

Share Document