biological mechanism
Recently Published Documents


TOTAL DOCUMENTS

253
(FIVE YEARS 96)

H-INDEX

26
(FIVE YEARS 4)

2022 ◽  
Vol 12 (2) ◽  
pp. 381-385
Author(s):  
Cui Qin ◽  
Yibo Xiang ◽  
Sheng Li ◽  
Shu Huang ◽  
Wenjun Chen ◽  
...  

This study intends to assess miR-653’s expression in MSCs and OSCC and discuss molecular biological mechanism of changes of EMT in MSCs through activating miR-653 in OSCC. miR-653 expression in MSCs and OSCC was detected. si-miR-653 was transfected into MSCs followed by analysis of cell proliferation by CCK-8 and clone formation assay, cell apoptosis and cycle by FCM, and the changes of transcription factor as ZEB1 and Snail by qRT-PCR. miR-653 expression in OSCC cell was up-regulated significantly from the result of q-RT-PCR detection. The proliferation of MSCs induced by miR-653 was restrained and apoptotic rate was increased after treatment with si-miR-653 along with stagnated cycle of G1/G0 staging cell. The expression of transcription factor of EMT type as ZEB1 and Snail was elevated significantly after intervention using si-miR-653. In conclusion, the proliferation of OSCC could be induced by MSCs through activation with miR-653 which might be through regulation of EMT process.


Author(s):  
Jullian Wang

Maternal depression is a prevalent disorder among mothers: nearly 20% of women have experienced different levels of depressive symptoms during motherhood. The symptoms usually disappear by three years after their children were born, but some women experience them chronically. Maternal depression has been researched in terms of its negative influence on offspring since the 1960s. Children of chronically depressed mothers show delays in cognitive, emotional, and behavioral development. Moreover, they may even face mental health challenges themselves. How does maternal depression influence offspring? Previous studies have focused on the behaviors of mothers and found that mothers with depression interact with their children in a less engaging way. Recently, more researchers started to pay attention to the biological mechanism of this maternal depression’s negative influence. Cortisol, a hormone associated with stress, is regarded as a potential pathway of the transgenerational transmission of depression. Mothers with prenatal depression have elevated cortisol level during pregnancy, which is passed down to their children. After they are born, children of depressed mothers react to stress with more dramatic changes in cortisol level and compromised stress-coping abilities. Moreover, prenatal maternal depression also seems to shape the functional connectivity of amygdala, a brain area related to stress and emotions. For life situations like schooling, competing with peers or making significant decisions, children with decreased or abnormal stress-coping abilities will be in disadvantageous positions. Attenuated stress coping abilities brought by hormonal and neural changes may be a biological mechanism for children’s lower performance in cognitive and behavioral tasks.


2022 ◽  
Author(s):  
Jiaying Lin ◽  
Guangman Cui ◽  
Wenwei Jiang ◽  
Zhousheng Lin ◽  
Xinyue Lan ◽  
...  

Abstract Depression contributes to enhanced initiation, development and metastasis of breast cancer. Despite epidemiological studies and experimental data suggest that depression and breast cancer may share a common biological mechanism, the results from these studies remain inconsistent. Here, we fully focus on the underlying biological mechanism behind the adverse effects of depression against breast cancer patients, and highlight the practical therapeutic intervention and improving quality of life. Publicly available datasets deposited in the Gene Expression Omnibus (GEO) were downloaded. Gene ontology and Kyoto Encyclopedia of Genes and Genomes pathway analyses of the differentially expressed genes (DEGs), which were extracted by using R tools, were performed. The protein-protein interaction network of the target DEGs was constructed using Cytoscape software and the hub genes were identified. In our study, we found that genes encoding proinflammatory cytokine, such as IL-1β and TNF, had significantly increased expression in depression. Following chronically stimulated by TNFα and IL-1β (usually for 14-18 days), inflammatory cancer-associated fibroblasts (CAFs) had elevated expression of inflammatory genes. Furthermore, the TNF/TNFRSF1β and LEP/LEPR regulatory axes were proven to be hub pathways of the crosstalk between depression and breast cancer. Our findings demonstrate that inflammatory factors are messengers linking depression and breast cancer, and provided further guidance in clinical medication.


2022 ◽  
Author(s):  
Manisha Poudyal ◽  
Komal Patel ◽  
Ajay Singh Sawner ◽  
Laxmikant Gadhe ◽  
Pradeep Kadu ◽  
...  

Liquid-liquid phase separation (LLPS) has emerged as a crucial biological mechanism for sequestering macromolecules (such as proteins and nucleic acids) into membraneless organelles in cells. Unstructured and intrinsically disordered domains are known to facilitate multivalent interactions driving protein LLPS. We hypothesized that LLPS could be an intrinsic property of proteins/polypeptides at their high intermolecular interaction regime. To examine this, we studied many (a total of 23) proteins/polypeptides with different structures and sequences for LLPS study using molecular crowder polyethylene glycol (PEG-8000). We showed that all proteins and even highly charged polypeptides (under study) can undergo liquid condensate formation, however with different phase space and conditions. Using a single component and combinations of protein multicomponent (co-LLPS) systems, we establish that a variety of intermolecular interactions can drive proteins/polypeptides LLPS.


Author(s):  
Benjawan Tanunchai ◽  
Stefan Kalkhof ◽  
Vusal Guliyev ◽  
Sara Fareed Mohamed Wahdan ◽  
Dennis Krstic ◽  
...  

We discovered a biological mechanism supporting microbial degradation of bio-based poly (butylene succinate-co-adipate) (PBSA) plastic in soils under ambient and future climates. Here, we show that nitrogen-fixing bacteria facilitate the...


Biomolecules ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 39
Author(s):  
Lei Wu ◽  
Xinqiang Xie ◽  
Tingting Liang ◽  
Jun Ma ◽  
Lingshuang Yang ◽  
...  

Aging is closely related to the occurrence of human diseases; however, its exact biological mechanism is unclear. Advancements in high-throughput technology provide new opportunities for omics research to understand the pathological process of various complex human diseases. However, single-omics technologies only provide limited insights into the biological mechanisms of diseases. DNA, RNA, protein, metabolites, and microorganisms usually play complementary roles and perform certain biological functions together. In this review, we summarize multi-omics methods based on the most relevant biomarkers in single-omics to better understand molecular functions and disease causes. The integration of multi-omics technologies can systematically reveal the interactions among aging molecules from a multidimensional perspective. Our review provides new insights regarding the discovery of aging biomarkers, mechanism of aging, and identification of novel antiaging targets. Overall, data from genomics, transcriptomics, proteomics, metabolomics, integromics, microbiomics, and systems biology contribute to the identification of new candidate biomarkers for aging and novel targets for antiaging interventions.


2021 ◽  
Vol 33 (1) ◽  
Author(s):  
Claudia S. Miller ◽  
Raymond F. Palmer ◽  
Tania T. Dempsey ◽  
Nicholas A. Ashford ◽  
Lawrence B. Afrin

Abstract Background This paper explores the relationship between chemical intolerance (CI) and mast cell activation syndrome (MCAS). Worldwide observations provide evidence for a two-stage disease process called toxicant-induced loss of tolerance (TILT) as a mechanism for CI. TILT is initiated by a major exposure event or a series of lower-level exposures. Subsequently, affected individuals report that common chemical inhalants, foods, and drugs (i.e., various xenobiotics) trigger multi-system symptoms. Purpose To determine whether MCAS provides a plausible biological mechanism for CI/TILT. Methods Using the validated Quick Environmental Exposure and Sensitivity Inventory (QEESI), we compared patients diagnosed with MCAS (n = 147) to individuals who reported chemical intolerances (CI/TILT) following various exposures (n = 345) and to healthy controls (n = 76). Using ANOVA, we compared QEESI scores across groups. Clinical scores for the MCAS patient group were used to predict CI status using logistic regression. Results More than half (59%) of the MCAS group met criteria for CI. A logistic regression model illustrates that as the likelihood of patients having MCAS increased, their likelihood of having CI/TILT similarly increased, to a near-perfect correspondence at the high ends of the QEESI and clinical MCAS scores. Symptom and intolerance patterns were nearly identical for the CI and MCAS groups. Discussion We present data suggesting that xenobiotic activation of mast cells may underlie CI/TILT. The strikingly similar symptom and intolerance patterns for MCAS and TILT suggest that xenobiotics disrupt mast cells, leading to either or both of these challenging conditions. Faced with patients suffering from complex illness affecting multiple organ systems and fluctuating inflammatory, allergic, and dystrophic symptoms, clinicians can now ask themselves two questions: (1) Could MCAS be at the root of these problems? (2) Could environmental exposures be driving MC activation and mediator release? Increasing our understanding of the connection between TILT and MCs has the potential to expose a new link between environmental exposures and illness, offering new opportunities for improving individual and public health. Conclusion The close correspondence between QEESI scores and symptom patterns for MCAS and TILT patients supports xenobiotic-driven mast cell activation and mediator release (i.e., MCAS) as a plausible unifying biological mechanism for CI/TILT, with profound implications for medicine, public health, and regulatory toxicology.


2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Longjie Wang ◽  
Jialiang Lin ◽  
Weishi Li

Background. Intervertebral disc degeneration (IVDD) is the most significant cause of low back pain, the sixth-largest disease burden globally, and the leading cause of disability. This study is aimed at investigating the molecular biological mechanism of Danggui-Sini formula (DSF) mediated IVDD treatment. Methods. A potential gene set for DSF treatment of IVDD was identified through TCMSP, UniProt, and five disease gene databases. A protein interaction network of common targets between DSF and IVDD was established by using the STRING database. GO and KEGG enrichment analyses were performed using the R platform to discover the potential mechanism. Moreover, AutoDock Vina was used to verify molecular docking and calculate the binding energy. Results. A total of 119 active ingredients and 136 common genes were identified, including 10 core genes (AKT1, IL6, ALB, TNF, VEGFA, TP53, MAPK3, CASP3, JUN, and EGF). Enrichment analysis results showed that the therapeutic targets of DSF for diseases mainly focused on the AGE-RAGE signaling pathway involved in diabetic complications, IL-17 signaling pathway, TNF signaling pathway, Toll-like receptor signaling pathway, apoptosis, cellular senescence, PI3K-Akt signaling pathway, and FoxO signaling pathway. These biological processes are induced mainly in response to oxidative stress and reactive oxygen species and the regulation of apoptotic signaling pathways. Molecular docking showed that there was a stable affinity between the core genes and the key components. Conclusions. The combination of network pharmacology and molecular docking provides a practical way to analyze the molecular biological mechanism of DSF-mediated IVDD treatment, which confirms the “multicomponent, multitarget and multipathway” characteristics of DSF and provides an essential theoretical basis for clinical practice.


Sign in / Sign up

Export Citation Format

Share Document