gluon condensate
Recently Published Documents


TOTAL DOCUMENTS

181
(FIVE YEARS 21)

H-INDEX

26
(FIVE YEARS 2)

2022 ◽  
Vol 258 ◽  
pp. 02010
Author(s):  
Vitaly Bornyakov ◽  
Vladimir Goy ◽  
Evgeny Kozlovsky ◽  
Valentin Mitrjushkin ◽  
Roman Rogalyov

In the Landau-gauge lattice gluodynamics we find that, both in the SU(2) and SU(3) theory, a correlation of the Polyakov loop with the asymmetry of the A2 gluon condensate as well as with the longitudinal propagator makes it possible to determine the critical behavior of these quantities. We discuss finitevolume corrections and reveal that they can be reduced by the use of regression analysis. We also analyze the temperature dependence of low-momenta propagators in different Polyakov-loop sectors.


Universe ◽  
2021 ◽  
Vol 8 (1) ◽  
pp. 7
Author(s):  
Dmitry Antonov

This paper is devoted to the dual superconductor model of confinement in the 4D Yang–Mills theory. In the first part, we consider the latter theory compactified on a torus, and use the dual superconductor model in order to obtain the Polchinski–Strominger term in the string representation of a Wilson loop. For a certain realistic critical value of the product of circumferences of the compactification circles, which is expressed in terms of the gluon condensate and the vacuum correlation length, the coupling of the Polchinski–Strominger term turns out to be such that the string conformal anomaly cancels out, making the string representation fully quantum. In the second part, we use the analogy between the London limit of the dual superconductor and the low-energy limit of the 4D compact QED, to obtain the partition function of the dual superconductor model away from the London limit. There, we find a decrease of the vacuum correlation length, and derive the corresponding potential of monopole currents.


2021 ◽  
Vol 2021 (12) ◽  
Author(s):  
Anatoly Radyushkin ◽  
Shuai Zhao

Abstract We present results for one-loop corrections to the recently introduced “gluon condensate” PDF F(x). In particular, we give expression for the gg-part of its evolution kernel. To enforce strict compliance with the gauge invariance requirements, we have used on-shell states for external gluons, and have obtained identical results both in Feynman and light-cone gauges. No “zero mode” δ(x) terms were found for the twist-4 gluon PDF F(x). However a q2δ(x) term was found for the ξ = 0 GPD F(x, q2) at nonzero momentum transfer q. Overall, our results do not agree with the original attempt of one-loop calculations of F(x) for gluon states, which sets alarm warning for calculations that use matrix elements with virtual external gluons and for lattice renormalization procedures based on their results.


2021 ◽  
Vol 2021 (5) ◽  
Author(s):  
V. M. Braun ◽  
K. G. Chetyrkin ◽  
B. A. Kniehl

Abstract We consider the short-distance expansion of the product of two gluon field strength tensors connected by a straight-line-ordered Wilson line. The vacuum expectation value of this nonlocal operator is a common object in studies of the QCD vacuum structure, whereas its nucleon expectation value is known as the gluon quasi-parton distribution and is receiving a lot of attention as a tool to extract gluon distribution functions from lattice calculations. Extending our previous study [1], we calculate the three-loop coefficient functions of the scalar operators in the operator product expansion up to dimension four. As a by-product, the three-loop anomalous dimension of the nonlocal two-gluon operator is obtained as well.


2020 ◽  
Vol 2020 (12) ◽  
Author(s):  
Cesar Ayala ◽  
Xabier Lobregat ◽  
Antonio Pineda

Abstract We give the hyperasymptotic expansion of the plaquette with a precision that includes the terminant associated to the leading renormalon. Subleading effects are also considered. The perturbative series is regulated using the principal value prescription for its Borel integral. We use this analysis to give a determination of the gluon condensate in SU(3) pure gluodynamics that is independent of the scale and renormalization scheme used for the coupling constant: $$ {\left\langle {G}^2\right\rangle}_{\mathrm{PV}}\left({n}_f=0\right)=3.15(18){r}_0^{-4} $$ G 2 PV n f = 0 = 3.15 18 r 0 − 4 .


2020 ◽  
Vol 35 (15) ◽  
pp. 2050122
Author(s):  
H. R. Khan ◽  
E. H. Raslan ◽  
R. A. Reem

We present an analytic calculation of Branching Ratio (BR) and Charge-Parity (CP) violating asymmetries of the [Formula: see text] meson decays to [Formula: see text] by calculating the amplitude and the decay width of the process including the chiral loop and gluon condensate to first-order. We find the BR of [Formula: see text] which is in agreement with other experimental measurements and theoretical predictions. We also calculate the direct CP violation, CP violation in mixing and CP violation due to interference which are [Formula: see text], [Formula: see text] and [Formula: see text], respectively.


Sign in / Sign up

Export Citation Format

Share Document