mutant seedling
Recently Published Documents


TOTAL DOCUMENTS

4
(FIVE YEARS 0)

H-INDEX

2
(FIVE YEARS 0)

Genes ◽  
2018 ◽  
Vol 10 (1) ◽  
pp. 15
Author(s):  
Andrea Lia ◽  
Antonia Gallo ◽  
Lucia Marti ◽  
Pietro Roversi ◽  
Angelo Santino

Plants offer a simpler and cheaper alternative to mammalian animal models for the study of endoplasmic reticulum glycoprotein folding quality control (ERQC). In particular, the Arabidopsis thaliana (At) innate immune response to bacterial peptides provides an easy means of assaying ERQC function in vivo. A number of mutants that are useful to study ERQC in planta have been described in the literature, but only for a subset of these mutants the innate immune response to bacterial elicitors has been measured beyond monitoring plant weight and some physio-pathological parameters related to the plant immune response. In order to probe deeper into the role of ERQC in the plant immune response, we monitored expression levels of the Phosphate-induced 1 (PHI-1) and reticulin-oxidase homologue (RET-OX) genes in the At ER α-Glu II rsw3 and the At UGGT uggt1-1 mutant plants, in response to bacterial peptides elf18 and flg22. The elf18 response was impaired in the rsw3 but not completely abrogated in the uggt1-1 mutant plants, raising the possibility that the latter enzyme is partly dispensable for EF-Tu receptor (EFR) signaling. In the rsw3 mutant, seedling growth was impaired only by concomitant application of the At ER α-Glu II NB-DNJ inhibitor at concentrations above 500 nM, compatibly with residual activity in this mutant. The study highlights the need for extending plant innate immune response studies to assays sampling EFR signaling at the molecular level.


Author(s):  
Andrea Lia ◽  
Antonia Gallo ◽  
Lucia Marti ◽  
Pietro Roversi ◽  
Angelo Santino

Plants offer a simpler and cheaper alternative to mammalian animal models for the study of Endoplasmic Reticulum glycoprotein folding Quality Control (ERQC). In particular, the Arabidopsis thaliana (At) innate immune response to bacterial peptides provides an easy means of assaying ERQC function in vivo. A number of mutants that are useful to study ERQC in planta have been described in the literature, but only for a subset of these mutants the innate immune response to bacterial elicitors has been measured beyond monitoring plant weight and some physio-pathological parameters related to the plant immune response. In order to probe deeper into the role of ERQC in the plant immune response, we monitored expression levels of the PHI-1 and RET-OX genes in the At ER α-Glu II rsw3 and the At UGGT uggt1-1 mutant plants, in response to bacterial peptides elf18 and flg22. The elf18 response was impaired in the rsw3 but not completely abrogated in the uggt1-1 mutant plants, raising the possibility that the latter enzyme is partly dispensable for ERF signalling. In the rsw3 mutant, seedling growth was impaired only by concomitant application of the At ER α-Glu II NB-DNJ inhibitor at concentrations above 500 nM, suggesting residual activity in this mutant. The study highlights the need for extending plant innate immune response studies to assays sampling EFR signalling at the molecular level.


Development ◽  
1993 ◽  
Vol 117 (1) ◽  
pp. 149-162 ◽  
Author(s):  
U. Mayer ◽  
G. Buttner ◽  
G. Jurgens

gnom is one of several genes that make substantial contributions to pattern formation along the apical-basal axis of polarity in the Arabidopsis embryo as indicated by the mutant seedling phenotype. The apical and basal end regions of the body pattern, which include the meristems of the shoot and the root, fail to form, and a minority of mutant embryos lack morphological features of apical-basal polarity. We have investigated the developmental basis of the gnom mutant phenotype, taking advantage of a large number of EMS-induced mutant alleles. The seedling phenotype has been traced back to the early embryo in which the asymmetric division of the zygote is altered, now producing two nearly equal-sized cells. The apical daughter cell then undergoes abnormal divisions, resulting in an octant embryo with about twice the normal number of cells while the uppermost derivative of the basal cell fails to become the hypophysis, which normally contributes to root development. Consistent with this early effect, gnom appears to be epistatic to monopteros in doubly mutant embryos, suggesting that, without prior gnom activity, the monopteros gene cannot promote root and hypocotyl development. On the other hand, when root formation was induced in bisected seedlings, wild-type responded whereas gnom mutants failed to produce a root but formed callus instead. These results suggest that gnom activity promotes asymmetric cell division which we believe is necessary both for apical-basal pattern formation in the early embryo and for root formation in tissue culture.


Development ◽  
1991 ◽  
Vol 113 (Supplement_1) ◽  
pp. 27-38 ◽  
Author(s):  
Gerd Jürgens ◽  
Ulrike Mayer ◽  
Torres Ruiz Ramon A. ◽  
Thomas Berleth ◽  
Simon Miséra

Virtually nothing is known about the mechanisms that generate the basic body pattern in plant embryogenesis. As a first step towards the analysis of pattern formation, we have isolated and begun to characterise putative pattern mutants in the flowering plant, Arabidopsis thaliana. A large-scale screen for morphologically abnormal seedling mutants yielded about 250 lines for further study, and genetic evidence suggests saturation of the genome for this kind of mutation. The phenotypes of putative pattern mutants fall into distinct categories, classes and groups, which may reflect specific aspects of embryonic pattern formation. Mutant seedling phenotypes result from abnormal development in the early embryo. The implications of our findings are discussed with regard to the prospects for a mechanistic understanding of pattern formation in the plant embryo.


Sign in / Sign up

Export Citation Format

Share Document