cyclotron maser
Recently Published Documents


TOTAL DOCUMENTS

359
(FIVE YEARS 22)

H-INDEX

34
(FIVE YEARS 2)

2022 ◽  
Vol 163 (2) ◽  
pp. 58
Author(s):  
Paul E. Barrett

Abstract AE Aqr was until recently the only known magnetic cataclysmic variable (MCV) containing a rapidly spinning (33.08 s) white dwarf (WD). Its radio emission is believed to be a superposition of synchrotron-emitting plasmoids, because it has a positive spectral index spanning three orders of magnitude (≈2–2000 GHz) and is unpolarized. Both characteristics are unusual for MCVs. Recently, Thorstensen has suggested that the cataclysmic variable LAMOST J024048.51+195226.9 (henceforth, J0240+19) is a twin of AE Aqr based on its optical spectra. Optical photometry shows the star to be a high-inclination eclipsing binary with a spin period of 24.93 s, making it the fastest spinning WD. This paper presents three hours of Very Large Array radio observations of J0240+19. These observations show that the persistent radio emission from J0240+19 is dissimilar to that of AE Aqr in that it shows high circular polarization and a negative spectral index. The emission is most similar to that from the nova-like CV V603 Aql. We argue that the radio emission is caused by a superposition of plasmoids emitting plasma radiation or electron cyclotron maser emission from the lower corona of the donor star and not from the magnetosphere near the WD, because the latter site is expected to be modulated at the orbital period of the binary and to show eclipses—of which there is no evidence. The radio source J0240+19, although weak (≲ 1 mJy), is a persistent source in a high-inclination eclipsing binary, making it a good laboratory for studying radio emission from CVs.


2021 ◽  
Vol 654 ◽  
pp. A21
Author(s):  
S. E. B. Toet ◽  
H. K. Vedantham ◽  
J. R. Callingham ◽  
K. C. Veken ◽  
T. W. Shimwell ◽  
...  

Coherent radio emission from stars can be used to constrain fundamental coronal plasma parameters, such as plasma density and magnetic field strength. It is also a probe of chromospheric and magnetospheric acceleration mechanisms. Close stellar binaries, such as RS Canum Venaticorum (RS CVn) systems, are particularly interesting as their heightened level of chromospheric activity and possible direct magnetic interaction make them a unique laboratory to study coronal and magnetospheric acceleration mechanisms. RS CVn binaries are known to be radio-bright but coherent radio emission has only conclusively been detected previously in one system. Here, we present a population of 14 coherent radio emitting RS CVn systems. We identified the population in the ongoing LOFAR Two Metre Sky Survey as circularly polarised sources at 144 MHz that are astrometrically associated with known RS CVn binaries. We show that the observed emission is powered by the electron cyclotron maser instability. We use numerical calculations of the maser’s beaming geometry to argue that the commonly invoked ‘loss-cone’ maser cannot generate the necessary brightness temperature in some of our detections and that a more efficient instability, such as the shell or horseshoe maser, must be invoked. Such maser configurations are known to operate in planetary magnetospheres. We also outline two acceleration mechanisms that could produce coherent radio emission, one where the acceleration occurs in the chromosphere and one where the acceleration is due to an electrodynamic interaction between the stars. We propose radio and optical monitoring observations that can differentiate between these two mechanisms.


2021 ◽  
Author(s):  
Laurent Lamy ◽  
Lucas Colomban ◽  
Philippe Zarka

<p>The prominent component of Jovian decametric (auroral) emissions is induced by Io. Io decametric emissions (Io-DAM) have thus been monitored on a regular basis by Earth- or Space-based radio observatories for several decades. They display a typical arc-shaped structure in the time-frequency plane which results from the motion of the Io flux tube relative to the observer convolved with the anisotropic radio emission cone. Remote determination of the Io-DAM beaming pattern was used to check the emission conditions at the source (e.g. Queinnec & Zarka, 1998). It has been done at several occasions using various models of magnetic field/lead angles which introduce significant uncertainties. Nevertheless, Io-DAM arcs were shown to be consistent with oblique emissions triggered by the Cyclotron maser Instability from loss-cone electron distributions of a few keVs (Hess et al., 2008). The CMI validity for Jovian DAM and the prominence of loss cone electron distributions has been later confirmed by Juno in situ measurements (e.g. Louarn et al, 2017). In this study, we took advantage of simultaneous radio/UV or bi-point stereoscopic radio measurements provided by Juno/Waves, the Nançay Decameter Array and the Hubble Space Telescope to unambiguously derive the beaming pattern of several Io-DAM arcs and compare it with theoretical expectations. We then assess the energy of CMI-unstable auroral electrons at the source and discuss our results at the light of similar independent studies reaching different conclusions.</p>


2021 ◽  
Author(s):  
Patrick Galopeau ◽  
Mohammed Boudjada

<p>Five different Jupiter’s magnetic field models (O6, VIP4, VIT4, VIPAL and JRM09) are used to investigate the angular distribution of the Jovian decameter radiation occurrence probability, relatively to the local magnetic field<strong> B</strong> and its gradient <strong>∇</strong><em>B</em> in the source region. The most recent model JRM09, proposed by Connerney et al. [<em>Geophys. Res. Lett.</em>, <em>45</em>, 2590-2596, 2018], and derived from Juno’s first nine orbits observations, confirms the results obtained several years ago using older models (O6, VIP4, VIT4 and VIPAL): the radio emission is beamed in a hollow cone presenting a flattening in a specific direction. In this study, the same assumptions were made as in the previous ones: the Jovian decameter radiation is supposed to be produced by the cyclotron maser instability (CMI) in a plasma where <strong>B</strong> and <strong>∇</strong><em>B</em> are not parallel. The main result of our study is that the emission cone does not have any axial symmetry and then presents a flattening in a privileged direction. This flattening appears to be more important for the northern emission (34.8%) than for the southern emission (12.5%) probably due to the fact that the angle between the directions of <strong>B</strong> and <strong>∇</strong><em>B</em> is greater in the North (~10°) than in the South (~4°).</p>


Author(s):  
J. R. Callingham ◽  
B. J. S. Pope ◽  
A. D. Feinstein ◽  
H. K. Vedantham ◽  
T. W. Shimwell ◽  
...  

2020 ◽  
Vol 644 ◽  
pp. A157
Author(s):  
F. de Gasperin ◽  
T. J. W. Lazio ◽  
M. Knapp

Context. All the giant planets in the Solar System generate radio emission via electron cyclotron maser instability, giving rise most notably to Jupiter’s decametric emissions. An interaction with the solar wind is at least partially responsible for all of these Solar System electron cyclotron masers. HD 80606b is a giant planet with a highly eccentric orbit, leading to predictions that its radio emission may be enhanced substantially near periastron. Aims. This paper reports observations with the Low Frequency Array (LOFAR) of HD 80606b near its periastron in an effort to detect radio emissions generated by an electron cyclotron maser instability in the planet’s magnetosphere. Methods. The reported observations are at frequencies between 30 and 78 MHz, and they are distinguished from most previous radio observations of extrasolar planets by two factors: (i) they are at frequencies near 50 MHz, much closer to the frequencies at which Jupiter emits (ν < 40 MHz) and lower than most previously reported observations of extrasolar planets; and (ii) sensitivities of approximately a few millijanskys have been achieved, an order of magnitude or more below nearly all previous extrasolar planet observations below 100 MHz. Results. We do not detect any radio emissions from HD 80606b and use these observations to place new constraints on its radio luminosity. We also revisit whether the observations were conducted at a time when HD 80606b was super-Alfvénic relative to the host star’s stellar wind, which experience from the Solar System illustrates is a state in which an electron cyclotron maser emission can be sustained in a planet’s magnetic polar regions.


2020 ◽  
Vol 500 (3) ◽  
pp. 3898-3907
Author(s):  
H K Vedantham

ABSTRACT Two coherent radio emission mechanisms operate in stellar coronae: plasma emission and cyclotron emission. They directly probe the electron density and magnetic field strength respectively. Most stellar radio detections have been made at cm-wavelengths where it is often not possible to uniquely identify the emission mechanism, hindering the utility of radio observations in probing coronal conditions. In anticipation of stellar observations from a suite of sensitive low-frequency ($\nu \sim 10^2\, {\rm MHz}$) radio telescopes, here I apply the general theory of coherent emission in non-relativistic plasma to the low-frequency case. I consider the recently reported low-frequency emission from dMe flare stars AD Leo and UV Ceti and the quiescent star GJ 1151 as test cases. My main conclusion is that unlike the cm-wave regime, for reasonable turbulence saturation regimes, the emission mechanism in metre-wave observations ($\nu \sim 10^2\, {\rm MHz}$) can often be identified based on the observed brightness temperature, emission duration, and polarization fraction. I arrive at the following heuristic: M-dwarf emission that is ≳ hour-long with ${\gtrsim}50{{\ \rm per\ cent}}$ circular polarized fraction at brightness temperatures of ${\gtrsim}10^{12}\,$K at ${\sim}100\, {\rm MHz}$ in M-dwarfs strongly favours a cyclotron maser interpretation.


2020 ◽  
Author(s):  
Xiaofei Li ◽  
Ding Zhao ◽  
Qianzhong Xue ◽  
Yidong Xiang

Sign in / Sign up

Export Citation Format

Share Document