vector mode
Recently Published Documents


TOTAL DOCUMENTS

80
(FIVE YEARS 22)

H-INDEX

14
(FIVE YEARS 2)

2021 ◽  
Vol 2021 (12) ◽  
pp. 041
Author(s):  
Yu. N. Eroshenko

Abstract The angular momentum (spin) acquisition by a collapsing domain wall at the cosmological radiation-dominated stage is investigated. During the collapses, primordial black holes and their clusters can be born in various mass ranges. Spin accumulation occurs under the influence of tidal gravitational perturbations from the surrounding density inhomogeneities at the epoch when the domain wall crosses the cosmological horizon. It is shown that the dimensionless spin parameter can have the small values aS  < 1 only for primordial black holes with masses M > 10-3M☉, whereas less massive black holes receive extreme spins aS  ≃ 1. It is possible that primordial black holes obtain an additional spin due to the vector mode of perturbations.


2021 ◽  
Author(s):  
Hani W. Maalouf

Abstract A sorting out method, between the New Physics and as vs. the Lepton Flavor Violated Chiral insertion is exposed, interpreting so the Light-by-Light scattered amplitude deviation in the muon magnetic moment, with a novel 2-color instead of 3-color in diagrams projective polarizations. The calculation is done using an extension-detention of the muon resonance interaction internal lines (which may be generically of a non-QCD nature)such its modes’ phonons decompose into instantons while the helicities are to meet the imposed polarizations. A confirmation comes out from a non-applicability of the Landau Gauge, to the one of the cases, the tri-vector-mode, giving it a double pole in its Goldstone propagator, vs. its truth in the Sudakov type with a single pole mode Goldstone propagator.The fits between expansions of the phonon derived from slicing’s, and the instanton derived from inverse arguments of differently coupled cosine’s, are surprisingly proportional to their projected (2 to 3 in their extended diagrams) normalization factors paving ways into a BSM popped up selectivity method.


2021 ◽  
Vol 10 (1) ◽  
Author(s):  
Shuqing Chen ◽  
Zhiqiang Xie ◽  
Huapeng Ye ◽  
Xinrou Wang ◽  
Zhenghao Guo ◽  
...  

AbstractThe emergence of cylindrical vector beam (CVB) multiplexing has opened new avenues for high-capacity optical communication. Although several configurations have been developed to couple/separate CVBs, the CVB multiplexer/demultiplexer remains elusive due to lack of effective off-axis polarization control technologies. Here we report a straightforward approach to realize off-axis polarization control for CVB multiplexing/demultiplexing based on a metal–dielectric–metal metasurface. We show that the left- and right-handed circularly polarized (LHCP/RHCP) components of CVBs are independently modulated via spin-to-orbit interactions by the properly designed metasurface, and then simultaneously multiplexed and demultiplexed due to the reversibility of light path and the conservation of vector mode. We also show that the proposed multiplexers/demultiplexers are broadband (from 1310 to 1625 nm) and compatible with wavelength-division-multiplexing. As a proof of concept, we successfully demonstrate a four-channel CVB multiplexing communication, combining wavelength-division-multiplexing and polarization-division-multiplexing with a transmission rate of 1.56 Tbit/s and a bit-error-rate of 10−6 at the receive power of −21.6 dBm. This study paves the way for CVB multiplexing/demultiplexing and may benefit high-capacity CVB communication.


2021 ◽  
Author(s):  
Xiaoqian Wang ◽  
Hu Zhang ◽  
Jingxuan Yang ◽  
Xiaoguang Zhang ◽  
Lixia Xi ◽  
...  

2021 ◽  
Vol 15 (3) ◽  
Author(s):  
Isaac Nape ◽  
Nikiwe Mashaba ◽  
Nokwazi Mphuthi ◽  
Sruthy Jayakumar ◽  
Shanti Bhattacharya ◽  
...  

2021 ◽  
pp. 1-1
Author(s):  
Huiyi Guo ◽  
Baiwei Mao ◽  
Yong You ◽  
Luhe Zhang ◽  
Siyu Chen ◽  
...  

Electronics ◽  
2020 ◽  
Vol 9 (10) ◽  
pp. 1739
Author(s):  
Hui Chen ◽  
Lin Jiang ◽  
Heping Yang ◽  
Zhonghai Lu ◽  
Yuxiang Fu ◽  
...  

The efficient and precise hardware implementations of tanh and sigmoid functions play an important role in various neural network algorithms. Different applications have different requirements for accuracy. However, it is difficult for traditional methods to achieve adjustable precision. Therefore, we propose an efficient-hardware, adjustable-precision and high-speed architecture to implement them for the first time. Firstly, we present two methods to implement sigmoid and tanh functions. One is based on the rotation mode of hyperbolic CORDIC and the vector mode of linear CORDIC (called RHC-VLC), another is based on the carry-save method and the vector mode of linear CORDIC (called CSM-VLC). We validate the two methods by MATLAB and RTL implementations. Synthesized under the TSMC 40 nm CMOS technology, we find that a special case AR∣VR(3,0), based on RHC-VLC method, has the area of 4290.98 μm2 and the power of 1.69 mW at the frequency of 1.5 GHz. However, under the same frequency, AR∣VC(3) (a special case based on CSM-VLC method) costs 3196.36 μm2 area and 1.38 mW power. They are both superior to existing methods for implementing such an architecture with adjustable precision.


2020 ◽  
Vol 123 ◽  
pp. 105945 ◽  
Author(s):  
Runxia Tao ◽  
Hongxun Li ◽  
Yimin Zhang ◽  
Peijun Yao ◽  
Lixin Xu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document