scholarly journals A pleiotropic chemoreceptor facilitates the functional coupling of pheromone production and perception

2022 ◽  
Author(s):  
Cassondra Vernier ◽  
kathleen Zelle ◽  
Nicole Leitner ◽  
Xitong Liang ◽  
Sean Halloran ◽  
...  

Optimal mating decisions depend on the robust coupling of signal production and perception because independent changes in either could carry a fitness cost. However, since the perception and production of mating signals are often mediated by different tissues and cell types, the mechanisms that drive and maintain their coupling remain unknown for most animal species. Here, we show that in Drosophila, sensory perception and production of an inhibitory mating pheromone are co-regulated by Gr8a, a member of the Gustatory receptor gene family. Specifically, we found that the pleiotropic action of Gr8a independently regulates the perception of pheromones by the chemosensory systems of males and females, as well as their production in the fat body and oenocytes of males. These findings provide a relatively simple molecular explanation for how pleiotropic receptors maintain robust mating signaling systems at the population and species levels.

2017 ◽  
Author(s):  
Kathleen M. Zelle ◽  
Cassondra Vernier ◽  
Nicole Leitner ◽  
Xitong Liang ◽  
Sean Halloran ◽  
...  

ABSTRACTOptimal mating decisions depend on stable signaling systems because any independent changes in either the signal or its perception could carry a fitness cost. However, since the perception and production of specific mating signals are often mediated by different tissues and cell types, the genetic and cellular mechanisms that drive and maintain their coupling on the evolutionary and physiological timescales remain unknown for most animal species. Here, we show that in Drosophila melanogaster, sensory perception and synthesis of an inhibitory mating pheromone is regulated by the action of Gr8a, a member of the Gustatory receptor gene family. Particularly, Gr8a acts as a pheromone chemoreceptor in the sensory system of males and females, and, independently regulates pheromone synthesis in the male fat body and oenocytes. These data provide a relatively simple molecular explanation for how genetic coupling allows for the robust and stable flow of social information at the population level.


Insects ◽  
2021 ◽  
Vol 12 (7) ◽  
pp. 611
Author(s):  
Patamarerk Engsontia ◽  
Chutamas Satasook

The red palm weevil (Rhynchophorus ferrugineus) is a highly destructive pest of oil palm, date, and coconut in many parts of Asia, Europe, and Africa. The Food and Agriculture Organization of the United Nations has called for international collaboration to develop a multidisciplinary strategy to control this invasive pest. Previous research focused on the molecular basis of chemoreception in this species, particularly olfaction, to develop biosensors for early detection and more effective bait traps for mass trapping. However, the molecular basis of gustation, which plays an essential role in discriminating food and egg-laying sites and chemical communication in this species, is limited because its complete gustatory receptor gene family still has not been characterized. We manually annotated the gene family from the recently available genome and transcriptome data and reported 50 gustatory receptor genes encoding 65 gustatory receptors, including 7 carbon dioxide, 9 sugar, and 49 bitter receptors. This study provides a platform for future functional analysis and comparative chemosensory study. A better understanding of gustation will improve our understanding of this species’ complex chemoreception, which is an important step toward developing more effective control methods.


2014 ◽  
Vol 193 (12) ◽  
pp. 6016-6030 ◽  
Author(s):  
Nicholas D. Sanderson ◽  
Paul J. Norman ◽  
Lisbeth A. Guethlein ◽  
Shirley A. Ellis ◽  
Christina Williams ◽  
...  

1992 ◽  
Vol 135 (3) ◽  
pp. 459-468 ◽  
Author(s):  
K. L. Hull ◽  
R. A. Fraser ◽  
S. Harvey

ABSTRACT Although GH has no direct effect on GH release from chicken pituitary glands, GH receptor mRNA similar to that in the rabbit liver was identified by Northern blot analysis in extracts of adult chicken pituitaries. Complementary (c) DNA, reverse transcribed from chicken pituitary RNA, was amplified by the polymerase chain reaction (PCR) in the presence of 3′- and 5′-oligonucleotide primers coding for the extracellular domain of the chicken liver GH receptor and was found to contain an electrophoretically separable fragment of 500 bp, identical in size to that in chicken liver. Digestion of this pituitary cDNA with NcoI produced expected moities of 350 and 150 bp. Amplification of chicken pituitary cDNA in the presence of oligonucleotide primers for the intracellular sequence of the chicken liver GH receptor produced an electrophoretically separable fragment of approximately 800 bp, similar to that in chicken liver. This fragment was cut into expected moieties of 530 and 275 bp after digestion with EcoRI. These PCR fragments were identified in extracts of the pituitary caudal lobe, in which somatotrophs are confined and account for the majority of endocrine cell types, and in the cephalic lobe, in which somatotrophs are lacking. Translation of the GH receptor mRNA in the pituitary gland was indicated by the qualitative demonstration of radio-labelled GH-binding sites in plasma membrane preparations, in pituitary cytosol and in nuclear membranes. These results provide evidence for the expression and translation of the GH receptor gene in pituitary tissue, in which GH receptors appear to be widely distributed within cells and in different cell types. GH may therefore have paracrine, autocrine or intracrine effects on pituitary function. Journal of Endocrinology (1992) 135, 459–468


Endocrinology ◽  
1999 ◽  
Vol 140 (5) ◽  
pp. 2110-2116 ◽  
Author(s):  
Roni Mamluk ◽  
Nitzan Levy ◽  
Bo Rueda ◽  
John S. Davis ◽  
Rina Meidan

Abstract Our previous studies demonstrated that endothelin-1 (ET-1), a 21-amino acid vasoconstrictor peptide, has a paracrine regulatory role in bovine corpus luteum (CL). The peptide is produced within the gland where it inhibits progesterone production by acting via the selective type A endothelin (ETA) receptors. The present study was designed to characterize ETA receptor gene expression in different ovarian cell types and its hormonal regulation. ETA receptor messenger RNA (mRNA) levels were high in follicular cells as well as in CL during luteal regression. At this latter stage, high ETA receptor expression concurred with low prostaglandin F2α receptor mRNA. The ETA receptor gene was expressed by all three major cell populations of the bovine CL; i.e. small and large luteal cells, as well as in luteal endothelial cells. Among these various cell populations, the highest ETA receptor mRNA levels were found in endothelial cells. cAMP elevating agents, forskolin and LH, suppressed ETA receptor mRNA expression in luteinized theca cells (LTC). This inhibition was dose dependent and was evident already after 24 h of incubation. In luteinized granulosa cells (LGC), 10 and 100 ng/ml of insulin-like growth factor I and insulin (only at a concentration of 2000 ng/ml) markedly decreased ETA receptor mRNA levels. In both LGC and LTC there was an inverse relationship between ETA receptor gene expression and progesterone production; insulin (in LGC) and forskolin (in LTC) enhanced progesterone production while inhibiting ETA receptor mRNA levels. Our findings may therefore suggest that, during early stages of luteinization when peak levels of both LH and insulin-like growth factor I exist, the expression of ETA receptors in the gland are suppressed. This study demonstrates physiologically relevant regulatory mechanisms controlling ETA receptor gene expression and further supports the inhibitory role of ET-1 in CL function.


1994 ◽  
Vol 17 (3) ◽  
pp. 89-93 ◽  
Author(s):  
George R. Uhl ◽  
Steven Childers ◽  
Gavril Pasternak

2007 ◽  
Vol 48 (7) ◽  
pp. 1451-1456 ◽  
Author(s):  
Andrea Dichlberger ◽  
Larry A. Cogburn ◽  
Johannes Nimpf ◽  
Wolfgang J. Schneider

Sign in / Sign up

Export Citation Format

Share Document