intranuclear microtubules
Recently Published Documents


TOTAL DOCUMENTS

17
(FIVE YEARS 1)

H-INDEX

8
(FIVE YEARS 0)

2021 ◽  
Author(s):  
Caroline Sophie Simon ◽  
Yannik Voss ◽  
Charlotta Funaya ◽  
Marta Machado ◽  
Alexander Penning ◽  
...  

Rapid proliferation of Plasmodium falciparum parasites in human red blood cells is the cause of malaria and is underpinned by an unconventional cell division mode, called schizogony. Contrary to model organisms, P. falciparum replicates by multiple rounds of closed and asynchronous nuclear divisions that are not interrupted by cytokinesis. Organization and dynamics of the critical nuclear division factors are, however, poorly understood. Centriolar plaques, the centrosomes of P. falciparum, are important regulators of division and serve as microtubule organizing centers. Early microscopy studies reveal an acentriolar, amorphous structure although its detailed organization remains elusive. Intranuclear microtubules mediate chromosome segregation, but the small size of parasite nuclei has precluded detailed analysis of their arrangement by classical fluorescence microscopy. We apply our recently developed STED super-resolution microscopy protocol and live cell imaging to describe the reconfiguration of microtubules during schizogony. Analysis of centrin, nuclear pore, and microtubule positioning reveals a bipartite organization of the centriolar plaque. While centrin is extranuclear, we confirm by correlative light and electron tomography that microtubules are nucleated in a previously unknown and extended intranuclear compartment, which is devoid of chromatin. This study enables us to build a working model of the organization of an unconventional centrosome and better understand the diversity of eukaryotic cell division modes.



2018 ◽  
Author(s):  
Ann-Kathrin Mehnert ◽  
Caroline Sophie Simon ◽  
Julien Guizetti

AbstractImmunofluorescence staining is the key technique for visualizing organization of endogenous cellular structures in single cells. Labeling and imaging of blood stage Plasmodium falciparum has always been challenging since it is a small intracellular parasite. The gold standard for parasite immunofluorescence is fixation in suspension with addition of minute amounts of glutaraldehyde to the paraformaldehyde-based solution. While this maintains red blood cell integrity, it has been postulated that antigenicity of the parasite proteins was, if at all, only slightly reduced. Here we show the deleterious effect that even these small quantities of glutaraldehyde can have on immunofluorescence staining quality and present an alternative cell seeding protocol that allows fixation with only paraformaldehyde. The highly improved signal intensity and staining efficiency enabled us to carry out RescueSTED nanoscopy on microtubules and nuclear pores and describe their organization in greater detail throughout the blood stage cycle.Highlights- Omitting glutaraldehyde from fixative improves immunofluorescence staining- STED nanoscopy is readily applicable to infected red blood cells- Intranuclear microtubules are nucleated from distinct sites



2008 ◽  
Vol 19 (4) ◽  
pp. 1646-1662 ◽  
Author(s):  
Yannick Gachet ◽  
Céline Reyes ◽  
Thibault Courthéoux ◽  
Sherilyn Goldstone ◽  
Guillaume Gay ◽  
...  

In eukaryotic cells, proper formation of the spindle is necessary for successful cell division. We have studied chromosome recapture in the fission yeast Schizosaccharomyces pombe. We show by live cell analysis that lost kinetochores interact laterally with intranuclear microtubules (INMs) and that both microtubule depolymerization (end-on pulling) and minus-end–directed movement (microtubule sliding) contribute to chromosome retrieval to the spindle pole body (SPB). We find that the minus-end–directed motor Klp2 colocalizes with the kinetochore during its transport to the SPB and contributes to the effectiveness of retrieval by affecting both end-on pulling and lateral sliding. Furthermore, we provide in vivo evidence that Dam1, a component of the DASH complex, also colocalizes with the kinetochore during its transport and is essential for its retrieval by either of these mechanisms. Finally, we find that the position of the unattached kinetochore correlates with the size and orientation of the INMs, suggesting that chromosome recapture may not be a random process.



2005 ◽  
Vol 125 (1-2) ◽  
pp. 183-191 ◽  
Author(s):  
D. Krajčí ◽  
V. Mareš ◽  
V. Lisá ◽  
M.G. Bottone ◽  
C. Pellicciari




1998 ◽  
Vol 143 (4) ◽  
pp. 1029-1040 ◽  
Author(s):  
Christian Hofmann ◽  
Iain M. Cheeseman ◽  
Bruce L. Goode ◽  
Kent L. McDonald ◽  
Georjana Barnes ◽  
...  

In this paper, we describe the identification and characterization of two novel and essential mitotic spindle proteins, Duo1p and Dam1p. Duo1p was isolated because its overexpression caused defects in mitosis and a mitotic arrest. Duo1p was localized by immunofluorescence, by immunoelectron microscopy, and by tagging with green fluorescent protein (GFP), to intranuclear spindle microtubules and spindle pole bodies. Temperature-sensitive duo1 mutants arrest with short spindles. This arrest is dependent on the mitotic checkpoint. Dam1p was identified by two-hybrid analysis as a protein that binds to Duo1p. By expressing a GFP–Dam1p fusion protein in yeast, Dam1p was also shown to be associated with intranuclear spindle microtubules and spindle pole bodies in vivo. As with Duo1p, overproduction of Dam1p caused mitotic defects. Biochemical experiments demonstrated that Dam1p binds directly to microtubules with micromolar affinity. We suggest that Dam1p might localize Duo1p to intranuclear microtubules and spindle pole bodies to provide a previously unrecognized function (or functions) required for mitosis.



1988 ◽  
Vol 107 (4) ◽  
pp. 1409-1426 ◽  
Author(s):  
C W Jacobs ◽  
A E Adams ◽  
P J Szaniszlo ◽  
J R Pringle

We used the inhibitor nocodazole in conjunction with immunofluorescence and electron microscopy to investigate microtubule function in the yeast cell cycle. Under appropriate conditions, this drug produced a rapid and essentially complete disassembly of cytoplasmic and intranuclear microtubules, accompanied by a rapid and essentially complete block of cellular and nuclear division. These effects were similar to, but more profound than, the effects of the related drug methyl benzimidazole carbamate (MBC). In the nocodazole-treated cells, the selection of nonrandom budding sites, the formation of chitin rings and rings of 10-nm filaments at those sites, bud emergence, differential bud enlargement, and apical bud growth appeared to proceed normally, and the intracellular distribution of actin was not detectably perturbed. Thus, the cytoplasmic microtubules are apparently not essential for the establishment of cell polarity and the localization of cell-surface growth. In contrast, nocodazole profoundly affected the behavior of the nucleus. Although spindle-pole bodies (SPBs) could duplicate in the absence of microtubules, SPB separation was blocked. Moreover, complete spindles present at the beginning of drug treatment appeared to collapse, drawing the opposed SPBs and associated nuclear envelope close together. Nuclei did not migrate to the mother-bud necks in nocodazole-treated cells, although nuclei that had reached the necks before drug treatment remained there. Moreover, the double SPBs in arrested cells were often not oriented toward the budding sites, in contrast to the situation in normal cells. Thus, microtubules (cytoplasmic, intranuclear, or both) appear to be necessary for the migration and proper orientation of the nucleus, as well as for SPB separation, spindle function, and nuclear division.



1980 ◽  
Vol 44 (1) ◽  
pp. 135-151
Author(s):  
J.B. Tucker ◽  
J. Beisson ◽  
D.L. Roche ◽  
J. Cohen

The ‘amitotic’ division of the macronucleus during binary fission in P. tetraurelia includes a detailed sequence of shape changes that are temporally coordinated with the adoption of a series of well-defined positions and orientations inside the cell. The deployment of nucleoplasmic microtubules that is spatially correlated with the shaping ritual is more complex and precise than has been reported previously. Macronuclear division is not amitotic. It is not a simple constriction into two halves. As a dividing macronucleus starts to elongate it becomes dorsoventrally flattened against the dorsal cortex of the organism and assumes an elliptical shape. Concurrently, an elliptical marginal band of intranuclear microtubules assembles that has the same spatial relationship to nuclear shape as the marginal microtubules assembles that has the same spatial relationship to nuclear shape as the marginal microtubule bands of certain elliptical vertebrate blood cells have to cell shape. The band breaks down as further elongation occurs and the nucleus adopts the shape of a straight and slender sausage. Most of the intranuclear microtubules assemble as elongation starts and break down shortly after elongation is completed; the majority are oriented parallel to the longitudinal axis of the nucleus throughout elongation. Some of them are attached to nucleoli and are coated with granules which are almost certainly derived from the cortices of nucleoli. The peripheral concentration, interconnexion, orientation, and overlapping arrangement of microtubules, and the reduction in microtubule number per nuclear cross-section as elongation proceeds at a rate of about 40 micrometers min-1, are all compatible with the provision of a microtubule sliding mechanism as the main skeletal basis for elongation. There are indications that this mechanism is augmented by anchorage and/or active propulsion of nucleoli that may perhaps facilitate fairly equitable segregation of chromosomal material to daughter nuclei.



1980 ◽  
Vol 209 (2) ◽  
Author(s):  
Fran�oise Tripier-Darcy ◽  
Jacqueline Braunwald ◽  
Andr� Kirn


1979 ◽  
Vol 57 (9) ◽  
pp. 1723-1735 ◽  
Author(s):  
Hampik S. Injeyan ◽  
Erwin Huebner

The ultrastructure of Entamoeba sp. (Laredo isolate), seen in thin section and in freeze-fracture preparation, indicates that numerous structural features are common to both this E. histolytica-like amoeba and "regular" strains. In addition, heavy meromyosin (HMM)-binding, actin-like microfilaments and intranuclear microtubules and microfilaments are demonstrated for the first time in Entamoeba. Cytoplasmic microtubules were not detected using two different fixation procedures. Replicas of freeze-fractured membrane surfaces revealed particle size and distribution to be heterogeneous on both fracture faces P and E and suggested a similar structural complexity to that previously described for the HK9 strain of E. histolytica. Particle density was determined in plasma and phagosome membranes, and an enrichment of 4.5-fold and 1.6-fold was estimated for the P and E faces, respectively, of phagosome membranes.Nuclear-pore distribution was heterogenous and pore density was highly variable in log-phase cells probably reflecting different cell-cycle stages. Possible differences in nuclear-pore density and distribution relative to published accounts on "regular" strains of E. histolytica are considered.



Sign in / Sign up

Export Citation Format

Share Document