boron complexes
Recently Published Documents





2022 ◽  
Jinlei Zhou ◽  
Xiaotian Shi ◽  
Huitao Zheng ◽  
Guangxian Chen ◽  
Chen Zhang ◽  

Abstract The innovative construction of novel N,O-bidentate ligands and N,O π-conjugated four-coordinate organoboron complexes represent a long-standing challenge for chemists. Here, we report an unprecedented and straightforward approach for the construction of N,O-bidentate ligands and their organoboron complexes via the merge of ring deconstruction with cycloaromatization of indolizines and cyclopropenones. Without any catalysts, our method is able to deliver a series of polyaryl 2-(pyridin-2-yl)phenol ligands, N,O π-conjugated organoboron (BF2 and BAr2) complexes with good functional-group compatibility which are difficult or even impossible to synthesize with previous methods. Importantly, the formed N,O-bidentate ligands were easy to scale up and derive with valuable drugs and active molecules. In addition, the photoluminescence measurements and the HOMO/LUMO gap have been investigated, the results have revealed that N,O π-conjugated tetracoordinate boron complexes display bright fluorescence, large Stokes shifts, and good quantum yields (Φlum = 0.15–0.45). The method proposed by the paper will inspire the development of various N,O-bidentate metal and boron complexes, which is expected to move the area of catalysis chemistry and material science forward.

Zachary Jordan ◽  
Shahriar N. Khan ◽  
Benjamin A. Jackson ◽  
Evangelos Miliordos

Abstract Density functional theory and ab initio multi-reference calculations are performed to examine the stability and electronic structure of boron complexes that host diffuse electrons in their periphery. Such complexes (solvated electron precursors or SEPs) have been experimentally identified and studied theoretically for several s- and d-block metals. For the first time, we demonstrate that a p-block metalloid element can form a stable SEP when appropriate ligands are chosen. We show that three ammonia and one methyl ligands can displace two of the three boron valence electrons to a peripheral 1s-type orbital. The shell model for these outer electrons is identical to previous SEP systems (1s, 1p, 1d, 2s). Further, we preformed the first examination of a molecular system consisting of two SEPs bridged by a hydrocarbon chain. The electronic structure of these dimers is very similar to that of traditional diatomic molecules forming bonding and anti-bonding σ and π orbitals. Their ground state electronic structure resembles that of two He atoms, and our results indicate that the excitation energies are nearly independent of the chain length for four carbon atoms or longer. These findings pave the way for the development of novel materials similar to expanded metals and electrides.

Organics ◽  
2021 ◽  
Vol 2 (4) ◽  
pp. 365-375
Julien Massue ◽  
Denis Jacquemin ◽  
Gilles Ulrich

Multifunctional stimuli-responsive fluorophores showing bright environment-sensitive emissions have fueled intense research due to their innovative applications in the fields of biotechnologies, optoelectronics, and materials. A strong structural diversity is observed among molecular materials, which has been enriched over the years with a growing responsiveness to stimuli. Boron dipyrromethene (BODIPY) dyes have long been the flagship of emissive boron complexes due to their outstanding properties until a decade ago when analogues based on N^O, N^N, or N^C π-conjugated chelates emerged. The finality of developing borate dyes was to compensate for BODIPYs’ lack of solid-state fluorescence and small Stokes shifts while keeping their excellent optical properties in solution. Among them, the borate complexes based on a salicylaldimine ligand, called by the acronym boranils appear as the most promising, owing to their facile synthesis and dual-state emission properties. Boranil dyes have proven to be good alternatives to BODIPY dyes and have been applied in applications such as bioimaging, bioconjugation, and detection of biosubstrates. Meanwhile, ab initio calculations have rationalized experimental results and provided insightful feedback for future designs. This review article aims at providing a concise yet representative overview of the chemistry around the boranil core with the subsequent applications.

2021 ◽  
Vol 57 (10) ◽  
pp. 1614-1620
A. I. Koptyaev ◽  
T. A. Rumyantseva ◽  
D. V. Tyurin ◽  
V. E. Maizlish ◽  
V. V. Aleksandriiskii ◽  

2021 ◽  
Vol 55 (5) ◽  
pp. 368-374
D. S. Ionov ◽  
I. V. Ionova ◽  
N. A. Lobova ◽  
Yu. N. Kononevich ◽  
A. S. Belova ◽  

Materials ◽  
2021 ◽  
Vol 14 (15) ◽  
pp. 4298
Patrícia A. A. M. Vaz ◽  
João Rocha ◽  
Artur M. S. Silva ◽  
Samuel Guieu

Benzimidazole-based boranils were designed and synthesized in order to assess the influence of halogen substituents on their optoelectronic properties. All compounds are photoluminescent in solution and solid state. Compared to the free ligands, the new boranils emit at a lower wavelength, by elimination of the excited-state intramolecular proton transfer observed with the ligands. In the solid state, some of the boranils exhibit a deep blue emission, presenting Commission Internationale de l’Éclairage (CIE) coordinates with an x-component of less than 0.16 and a y-component smaller than 0.04, highly desired values for the development of blue emitting materials.

Khalid Naim ◽  
Subash Chandra Sahoo ◽  
Paloth Venugopalan ◽  
Prakash P. Neelakandan

2021 ◽  
Xiao-Qin Lu ◽  
Cai-Yue Gao ◽  
Zhi-Hong Wei ◽  
Si-Dian Li

Abstract Cage-like and core-shell metallo-borospherenes exhibit interesting structures and bonding. Based on extensive global searches and first-principles theory calculations, we predict herein the perfect tetrahedral cage-like Td La4B24 (1) and core-shell Td La4B29 (2), Td La4B29+ (3), and Td La4B29- (4) which all possess the same geometrical symmetry as their carbon fullerene counterpart Td C28, with four equivalent interconnected B6 triangles on the cage surface and four nona-coordinate La centers in four conjoined η9-B9 rings. In these tetra-La-doped boron complexes, La4[B@B4@B24]0/+/- (2/3/4) in the structural motif of 1+4+28 contain a B-centered tetrahedral Td B@B4 core in a La-decorated tetrahedral La4B24 shell, with the negatively charged tetra-coordinate B- at the center being the boron analog of tetrahedral C in Td CH4 (B-~C). Detailed orbital and bonding analyses indicate that these Td lanthanide boride complexes are spherically aromatic in nature with a universal La--B9 (d-p) σ and (d-p) δ coordination bonding pattern. The IR, Raman, and UV-Vis or photoelectron spectra of these novel metallo-borospherenes are computationally simulated to facilitate their spectral characterizations.

Sign in / Sign up

Export Citation Format

Share Document