boron dipyrromethene
Recently Published Documents


TOTAL DOCUMENTS

323
(FIVE YEARS 95)

H-INDEX

51
(FIVE YEARS 8)

Organics ◽  
2021 ◽  
Vol 2 (4) ◽  
pp. 365-375
Author(s):  
Julien Massue ◽  
Denis Jacquemin ◽  
Gilles Ulrich

Multifunctional stimuli-responsive fluorophores showing bright environment-sensitive emissions have fueled intense research due to their innovative applications in the fields of biotechnologies, optoelectronics, and materials. A strong structural diversity is observed among molecular materials, which has been enriched over the years with a growing responsiveness to stimuli. Boron dipyrromethene (BODIPY) dyes have long been the flagship of emissive boron complexes due to their outstanding properties until a decade ago when analogues based on N^O, N^N, or N^C π-conjugated chelates emerged. The finality of developing borate dyes was to compensate for BODIPYs’ lack of solid-state fluorescence and small Stokes shifts while keeping their excellent optical properties in solution. Among them, the borate complexes based on a salicylaldimine ligand, called by the acronym boranils appear as the most promising, owing to their facile synthesis and dual-state emission properties. Boranil dyes have proven to be good alternatives to BODIPY dyes and have been applied in applications such as bioimaging, bioconjugation, and detection of biosubstrates. Meanwhile, ab initio calculations have rationalized experimental results and provided insightful feedback for future designs. This review article aims at providing a concise yet representative overview of the chemistry around the boranil core with the subsequent applications.


Luminescence ◽  
2021 ◽  
Author(s):  
Hao Liu ◽  
Huan Su ◽  
Zhiyuan Chen ◽  
Senqiang Zhu ◽  
Rui Liu ◽  
...  

2021 ◽  
Author(s):  
Devin Douglas Machin

The dye-sensitized solar cell (DSSC) represents one of the most promising next-generation photovoltaic technologies. In addition, the DSSC manifold provides an exceptional platform to further appreciate photoinduced electron transfer and the fundamental features required for light-harvesting. The dye molecule is a key component in the DSSC and has achieved minor success utilizing both an organic and inorganic photosensitizers. DSSC’s show great promise owing to their inexpensive synthesis tunable optical and electrochemical properties, and a plethora of design possibilities. The typical anatomy of organic and inorganic DSSC dyes are comprised of a redox-active donor/chromophore (D) that is connected, through a conjugated linker (π), to an acceptor (A) capable of anchoring to titania (TiO2). Fine tuning each of these components can shift the absorption spectrum increasing the overall device efficiency. Boron-dipyrromethene (BODIPY) is an attractive moiety to integrate into DSSC dyes. BODIPY’s rigid organic framework should be able to improve dye stability while the high extinction coefficients of BODIPY based molecules have the potential to increase device performance. Herein, we explore the synthesis and physicochemical properties of BODIPY in an attempt to synthesize efficient DSSC dye molecules and efficient photovoltaic technologies.


Sign in / Sign up

Export Citation Format

Share Document