magnetorheological effect
Recently Published Documents


TOTAL DOCUMENTS

91
(FIVE YEARS 19)

H-INDEX

15
(FIVE YEARS 2)

2021 ◽  
Author(s):  
Tomas Plachy ◽  
Martin Cvek ◽  
Lukas Munster ◽  
Barbora Hanulikova ◽  
Pavol Suly ◽  
...  

Polymers ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 172
Author(s):  
Dmitry Borin ◽  
Gennady Stepanov ◽  
Anton Musikhin ◽  
Andrey Zubarev ◽  
Anton Bakhtiiarov ◽  
...  

The authors wish to make a change to the published paper [...]


Polymers ◽  
2020 ◽  
Vol 12 (10) ◽  
pp. 2371
Author(s):  
Dmitry Borin ◽  
Gennady Stepanov ◽  
Anton Musikhin ◽  
Andrey Zubarev ◽  
Anton Bakhtiiarov ◽  
...  

Within the frames of this study, the synthesis of a permalloy to be used as a filler for magnetoactive and magnetorheological elastomers (MAEs and MREs) was carried out. By means of the mechanochemical method, an alloy with the composition 75 wt.% of Fe and 25 wt.% of Ni was obtained. The powder of the product was utilized in the synthesis of MAEs. Study of the magnetorheological (MR) properties of the elastomer showed that in a ~400 mT magnetic field the shear modulus of the MAE increased by a factor of ~200, exhibiting an absolute value of ~8 MPa. Furthermore, we obtained experimentally a relative high loss factor for the studied composite; this relates to the size and morphology of the synthesized powder. The composite with such properties is a very perspective material for magnetocontrollable damping devices. Under the action of an external magnetic field, chain-like structures are formed inside the elastomeric matrix, which is the main determining factor for obtaining a high MR effect. The effect of chain-like structures formation is most pronounced in the region of small strains, since structures are partially destroyed at large strains. A proposed theoretical model based on chain formation sufficiently well describes the experimentally observed MR effect. The peculiarity of the model is that chains of aggregates of particles, instead of individual particles, are considered.


2020 ◽  
Vol 31 (14) ◽  
pp. 1641-1661 ◽  
Author(s):  
Amin Fereidooni ◽  
Afonso Martins ◽  
Viresh Wickramasinghe ◽  
Afzal Suleman

This article is focused on the development and characterization of highly controllable magnetorheological materials for stiffness and damping control in semi-active control applications. Two types of magnetorheological materials are developed in-house: magnetorheological elastomer with soft base elastomer, and magnetorheological fluid encapsulated in regular elastomer, namely magnetorheological fluid-elastomer. In both cases of magnetorheological elastomers and magnetorheological fluid-elastomers, the samples are evaluated using in-house-developed shear and compression test rigs, which are equipped with electromagnets and Hall effect sensors for measuring the magnetic field. These features provide the capability to precisely control a wide range of magnetic fields during the experiments. In the case of magnetorheological elastomers, the experimental results of the in-house magnetorheological elastomers are compared with commercially available counterparts made of hard base elastomer. It is shown that the controllability of the material, that is, the relative magnetorheological effect, is significantly improved in the case of magnetorheological elastomer with soft base elastomer. In addition to various magnetic fields, the samples are subjected to a range of loading amplitudes and frequencies. A general trend is observed where the frequency and strain amplitude cause an opposite effect on both the shear and compressive moduli: the increase in frequency gives rise to a higher value of modulus whereas the increase in amplitude reduces the modulus. Furthermore, the effect of bonding on the performance of the magnetorheological elastomers in compression mode is evaluated and the results indicate a significant increase in the modulus and decrease in the loss factor. In all the cases, however, the change of loss factor does not exhibit a predictable trend as a function of magnetic fields. In order to investigate a magnetorheological-based solution for controlling the damping of a semi-active system, magnetorheological fluid-elastomer samples are made in-house. These samples are fabricated using three different iron concentrations, and are tested in compression (squeeze) mode. The results of these experiments confirm that the equivalent damping coefficient of the material rises with the increase in magnetic field, and this effect becomes stronger as the iron concentration of magnetorheological fluids increases. It is also demonstrated that the magnetorheological effect is highly dependent on the loading frequency and amplitude, where the equivalent damping coefficient decreases with the increase in loading frequency and amplitude. In all the aforementioned cases, the stiffness of magnetorheological fluid-elastomers exhibits minor changes, which offers the in-house-developed magnetorheological fluid-elastomers as a damping only control option, a development that is different from the magnetorheological fluid-elastomers reported in the literature.


Author(s):  
Wanning Zhu ◽  
Xufeng Dong ◽  
Hao Huang ◽  
Min Qi

The improvement of properties of magnetorheological fluids and mechanism study has long been a classic area within the field of magnetorheological materials. This article was undertaken to dope the iron nanoparticles synthesized by direct current electric arc discharge with the traditional carbonyl iron powders to prepare bimodal magnetorheological fluids with different doping ratios. Their rheological properties and sedimentation stability were evaluated to explore the influence rules and mechanisms. The results indicate that the effect of the addition of iron nanoparticles on rheological properties under magnetic field is a combination of two opposing factors such as the strengthening of the structure and the weakening of magnetization. The sedimentation stability of the bimodal magnetorheological fluids improved significantly with the increase in the proportion of iron nanoparticles, which is attributed to the help of both free state and adsorbed state iron nanoparticles in magnetorheological fluids. Furthermore, within a specific magnetic field strength range, the bimodal magnetorheological fluids with a small proportion of iron nanoparticles can achieve an improvement in both rheological property and sedimentation stability compared with carbonyl iron particles–based magnetorheological fluids.


2020 ◽  
Vol 254 ◽  
pp. 120182 ◽  
Author(s):  
Martin Cvek ◽  
Rafael Torres-Mendieta ◽  
Ondrej Havelka ◽  
Michal Urbanek ◽  
Tomas Plachy ◽  
...  

Author(s):  
Mariem Mekni Abrougui ◽  
Ezzeddine Srasra ◽  
Modesto T. Lopez-Lopez ◽  
Juan D. G. Duran

Magnetic hydrogels (ferrogels) are soft materials with a wide range of applications, especially in biomedicine because (i) they can be provided with the required biocompatibility; (ii) their heterogeneous structure allows their use as scaffolds for tissue engineering; (iii) their mechanical properties can be modified by changing different design parameters or by the action of magnetic fields. These characteristics confer them unique properties for acting as patterns that mimic the architecture of biological systems. In addition, and (iv) given their high porosity and aqueous content, ferrogels can be loaded with drugs and guided towards specific targets for local (non-systemic) pharmaceutical treatments. The ferrogels prepared in this work contain magnetic particles obtained by precipitation of magnetite nanoparticles onto the porous surface of bentonite platelets. Then, the particles were functionalized by adsorption of alginate molecules and dispersed in an aqueous solution of sodium alginate. Finally, the gelation was promoted by cross-linking the alginate molecules with Ca 2+ ions. The viscoelastic properties of the ferrogels were measured in the absence/presence of external magnetic fields, showing that these ferrogels exhibited a strong enough magnetorheological effect. This behaviour is explained considering the field-induced strengthening of the heterogeneous (particle–polymer) network generated inside the ferrogel. This article is part of the theme issue ‘Patterns in soft and biological matters'.


2020 ◽  
Vol 116 (6) ◽  
pp. 063701 ◽  
Author(s):  
V. M. Kalita ◽  
Yu. I. Dzhezherya ◽  
G. G. Levchenko

Sign in / Sign up

Export Citation Format

Share Document