Fabrication and characterization of highly controllable magnetorheological material in compression mode

2020 ◽  
Vol 31 (14) ◽  
pp. 1641-1661 ◽  
Author(s):  
Amin Fereidooni ◽  
Afonso Martins ◽  
Viresh Wickramasinghe ◽  
Afzal Suleman

This article is focused on the development and characterization of highly controllable magnetorheological materials for stiffness and damping control in semi-active control applications. Two types of magnetorheological materials are developed in-house: magnetorheological elastomer with soft base elastomer, and magnetorheological fluid encapsulated in regular elastomer, namely magnetorheological fluid-elastomer. In both cases of magnetorheological elastomers and magnetorheological fluid-elastomers, the samples are evaluated using in-house-developed shear and compression test rigs, which are equipped with electromagnets and Hall effect sensors for measuring the magnetic field. These features provide the capability to precisely control a wide range of magnetic fields during the experiments. In the case of magnetorheological elastomers, the experimental results of the in-house magnetorheological elastomers are compared with commercially available counterparts made of hard base elastomer. It is shown that the controllability of the material, that is, the relative magnetorheological effect, is significantly improved in the case of magnetorheological elastomer with soft base elastomer. In addition to various magnetic fields, the samples are subjected to a range of loading amplitudes and frequencies. A general trend is observed where the frequency and strain amplitude cause an opposite effect on both the shear and compressive moduli: the increase in frequency gives rise to a higher value of modulus whereas the increase in amplitude reduces the modulus. Furthermore, the effect of bonding on the performance of the magnetorheological elastomers in compression mode is evaluated and the results indicate a significant increase in the modulus and decrease in the loss factor. In all the cases, however, the change of loss factor does not exhibit a predictable trend as a function of magnetic fields. In order to investigate a magnetorheological-based solution for controlling the damping of a semi-active system, magnetorheological fluid-elastomer samples are made in-house. These samples are fabricated using three different iron concentrations, and are tested in compression (squeeze) mode. The results of these experiments confirm that the equivalent damping coefficient of the material rises with the increase in magnetic field, and this effect becomes stronger as the iron concentration of magnetorheological fluids increases. It is also demonstrated that the magnetorheological effect is highly dependent on the loading frequency and amplitude, where the equivalent damping coefficient decreases with the increase in loading frequency and amplitude. In all the aforementioned cases, the stiffness of magnetorheological fluid-elastomers exhibits minor changes, which offers the in-house-developed magnetorheological fluid-elastomers as a damping only control option, a development that is different from the magnetorheological fluid-elastomers reported in the literature.

2013 ◽  
Vol 774-776 ◽  
pp. 54-57 ◽  
Author(s):  
Yu Fei Wang ◽  
Guo Fei Wang

A polyurethane-based magnetorheological elastomer (MR elastomer) was designed, and the magnetorheological effect (MR effect) under shear mode was systematically tested by the designed test set. The results show that the relative MR effect increases with the exterior magnetic filed strength and decreases as the incentive amplitudes increasing. The preload displacement also directly determines the relative MR effect and too large deformation will make the MR effect decreased sharply. But the incentive frequency has no very obviously influence on the relative MR effect.


2012 ◽  
Vol 23 (9) ◽  
pp. 1049-1054 ◽  
Author(s):  
Jeong-Hoi Koo ◽  
Alexander Dawson ◽  
Hyung-Jo Jung

This study investigates a new generation of magnetorheological elastomers based on hard magnetic particles. Unlike traditional magnetorheological elastomers that use iron particles, a dispersion of hard magnetic materials aligned in an electromagnetic field will produce a magnetorheological elastomer with magnetic poles. When a magnetic field is applied, perpendicularly to these poles, the filler particles generate torque and cause rotational motion of the magnetorheological elastomer blend. The primary goal of this study is to fabricate and characterize the actuation properties of magnetorheological elastomers filled with various hard magnetic particles. To this end, samples of magnetorheological elastomers consisting of hard magnetic materials were fabricated using four different particle types, and a test setup (electromagnet) was constructed. After mounting the magnetically anisotropic samples in a fixed-free configuration, uniform magnetic fields are applied to the samples (perpendicular to the poled direction), which causes the sample to bend, similar to a cantilevered beam. The blocked force and tip displacement of the samples were measured to characterize actuation properties of the samples. The results show that the responses of the deflection and the blocked force at the tip show linear trends over a reasonable range, suggesting that magnetorheological elastomers consisting of hard magnetic materials can be used as bending-type actuators in small mechanical systems and devices.


2019 ◽  
Vol 31 (3) ◽  
pp. 377-388 ◽  
Author(s):  
AK Bastola ◽  
M Paudel ◽  
L Li

This article presents the development of line-patterned magnetorheological elastomers via 3D printing and their magnetorheological characterization. Herein, we consider five different patterns of magnetorheological fluid filaments that are printed and encapsulated within the elastomer matrix. The 3D-printed magnetorheological elastomers could represent the conventional isotropic and anisotropic magnetorheological elastomers. First, the effect of patterning the magnetorheological fluid filaments and the effect of change in the direction of the magnetic field is studied for all five patterns. Thereafter, the dynamic properties of 3D-printed magnetorheological elastomers under uniaxial deformation are presented. Magnetorheological effect shown by 3D-printed magnetorheological elastomers was found to be depended on the printed patterns as well as the direction of the applied magnetic field. This result showed that the 3D printing method has the potential to produce anisotropic magnetorheological elastomers or unique configuration of magnetic particles within the elastomer matrix. The dynamic testing showed that the storage modulus of 3D-printed magnetorheological elastomers is increased with increasing frequency and decreased with increasing strain amplitude, which signifies that the 3D-printed hybrid magnetorheological elastomers are also viscoelastic materials and the properties are magnetic field dependent as that of current magnetorheological elastomers.


2019 ◽  
Vol 33 (25) ◽  
pp. 1950290
Author(s):  
Salah Aguib ◽  
Abdelkader Nour ◽  
Toufik Djedid

Materials with novel properties and compounds of intelligent material combinations are a key to innovation in various successful sectors of the global industry as well as for its export. Magnetorheological elastomer materials have interesting physical properties; most of these properties are modified and adapted under the influence of external parameters such as the magnetic field. In this work, an experimental characterization of the magnetorheological elastomers (MRE) loaded with 20% of the iron particles was made. The results showed that the properties of these materials can be modified very selectively and reversibly under the influence of magnetic field, where the stiffness of the material varies depending on the magnetic field intensity that influences the attractive force between iron particles.


2012 ◽  
Vol 23 (9) ◽  
pp. 1033-1039 ◽  
Author(s):  
Faramarz Gordaninejad ◽  
Xiaojie Wang ◽  
Praveen Mysore

In this study, the behavior of thick magnetorheological elastomers is experimentally investigated. Two types of magnetorheological elastomer specimens of varying concentrations, with circular and rectangular shapes having thicknesses from 6.35 mm to a maximum of 25.4 mm, are prepared. The magnetorheological elastomer samples are studied under quasi-static compression and double lap-shear tests. The shear and the Young’s moduli of the magnetorheological elastomers are obtained under different applied magnetic fields. It is observed that the field-induced change in the modulus is independent of the thickness of the magnetorheological elastomer and is only dependent on the iron particle concentration and the magnetic field strength. With the increase in the applied magnetic field, it is observed that the change in modulus varies from a linear behavior at lower applied magnetic fields to a nonlinear one at higher magnetic fields. It is found that compressive and shear moduli only depend on the applied magnetic fields and are independent of the sample thickness. In addition, the maximum induced change in material modulus under compression is shown to be 99%, whereas in shear it is found to be 68% when compared to its off-state.


2017 ◽  
Vol 28 (14) ◽  
pp. 1993-2004 ◽  
Author(s):  
Muntaz Hana Ahmad Khairi ◽  
Saiful Amri Mazlan ◽  
Ubaidillah ◽  
Ku Zarina Ku Ahmad ◽  
Seung-Bok Choi ◽  
...  

In this work, epoxidized natural rubber-50 magnetorheological elastomer was synthesized using conventional rubber processing. The ester plasticizer sucrose acetate isobutyrate was then incorporated into epoxidized natural rubber-50 to soften the matrix and to improve the relative magnetorheological effect. The influence of sucrose acetate isobutyrate ester on the microstructures and properties of epoxidized natural rubber-50 magnetorheological elastomers were experimentally investigated. It has been identified that the addition of sucrose acetate isobutyrate ester can reduce the viscosity of the matrix and increase the mobility of magnetic particles in a matrix. The elongation of magnetorheological elastomer was increased by 19%, and the tensile strength was reduced by 17% at 10 wt% content of the sucrose acetate isobutyrate ester. It is observed that the employment of sucrose acetate isobutyrate ester enhanced the thermal stability leading to low degradation of the properties of magnetorheological elastomer. In rheology test, both absolute and relative magnetorheological effects were increased by 0.16 MPa and 23%, respectively, with incorporation of the 7.5-wt% sucrose acetate isobutyrate ester. It is also identified that the storage and loss moduli as well as loss factor are increased as the excitation frequency is increased. It is finally concluded that agglomeration issues in isotropic magnetorheological elastomer which degrade performances of magnetorheological elastomer application devices and systems can be resolved by the addition of sucrose acetate isobutyrate ester to epoxidized natural rubber-50 used in this work.


2017 ◽  
Vol 29 (6) ◽  
pp. 1025-1037 ◽  
Author(s):  
Zhao-Dong Xu ◽  
Si Suo ◽  
Jun-Tao Zhu ◽  
Ying-Qing Guo

A new kind of magnetorheological elastomer with the matrix of the bromobutyl rubber is developed. The magnetoviscoelasticity properties of the magnetorheological elastomer specimens are investigated with respect to different magnetic fields, displacement amplitudes, and frequencies under sinusoidal loadings. The experimental results show that the shear storage modulus and the loss factor of magnetorheological elastomers increase with the increasing magnetic field, excitation frequency, and the weight fraction of particles, but decrease with the increasing strain amplitude, and the magnetorheological elastomers have a high loss factor which can reach to 0.682. Then, a microphysical model based on the assumption of the chi-square distribution of the distance between adjacent ferromagnetic particles is proposed, which can eliminate the error generated by the assumption of the uniform distribution and describe the magnetorheological effect more exactly. Based on the proposed microphysical model, the magnetoviscoelasticity parameter model is modified to describe the dynamic properties of magnetorheological elastomers. It can be concluded from comparison between the numerical and experimental results that the modified magnetoviscoelasticity parameter model can describe the magnetorheological elastomer’s performance well.


Author(s):  
Gigih Priyandoko

Many vibration isolators, for instance, passive vehicle mounting device, have fixed stiffness. This article presents the development of the adjustable stiffness engine mounting magnetorheological elastomers (MREs) based to reduce vibration. The development of MREs vibration isolator is to design of engine mounting first step, for next step is to simulate the electromagnetic circuit. The housing material selection and MREs thickness were considered to equip sufficient, uniform magnetic fields to change the stiffness. The innovative magnetic circuit design includes the type and size of the wire and the number of the coil turns to obtain the best magnetic fields to eliminate vibration. Finite Element Method Magnetics (FEMM) software was utilized to show the effectiveness of the electromagnetic circuit in generating magnetic fields through the MREs. Finally, various current input influence to the MREs vibration isolator is investigated. The higher current input is more useful to eliminate vibration using MREs isolator system.


2018 ◽  
Vol 30 (2) ◽  
pp. 228-242 ◽  
Author(s):  
Siddaiah Yarra ◽  
Faramarz Gordaninejad ◽  
Majid Behrooz ◽  
Gokhan Pekcan

This study presents an experimental investigation on large-strain behavior of natural rubber– and silicone-based magnetorheological elastomers within a larger scope of structural vibration mitigation due to wind, traffic and seismic events. Magnetorheological elastomer samples with different weight percentages of iron particles, additives, and elastomer matrix were fabricated. The microstructures of specimens were examined, and their mechanical properties were investigated by a unique electromagnetic double-lap shear experimental setup capable of applying simultaneous compression and shear loads. The experimental results demonstrated that the isotropic natural rubber–based magnetorheological elastomers exhibit about 30% magnetorheological effect under large strains, while they achieve a higher magnetorheological effect under the combined axial and shear loading. The magnetorheological effect was 92% and 33% for 10% and 100% shear strains when 100 psi axial stress was applied. A natural rubber–based magnetorheological elastomer was further investigated applying dynamic cyclic load with and without compression load for different strains, frequencies, and magnetic field intensities. It was observed that for higher frequency, magnetorheological effect was reduced. Magnetorheological effects were 73% and 29% for 0.1 and 10 Hz frequencies, respectively, under 100 psi axial stress at 150% shear strain. The result of this study suggests that isotropic natural rubber–based magnetorheological elastomers may be suitable for high-demand-force applications, and in particular, in civil structures.


2015 ◽  
Vol 240 ◽  
pp. 238-243
Author(s):  
Danuta Miedzińska ◽  
Paweł Bogusz ◽  
Roman Gieleta

Magnetorheological elastomers (MREs) belong to the group of so-called smart materials, which respond to an external stimulus by changing their viscoelastic properties.The vibration head will be modified with the MRE regulation system. The elastomer pillows will be enhanced with MRE and the regulation system (coils).The main idea of the modification is to increase an effectiveness of the vibrator work by the regulation that will stable the vibrations in the resonance frequency. It will be caused by the changeable stiffness of MRE elements under magnetic field.The aim of presented study is to research the influence of MREs cured under the magnetic fields on the strength properties of the elastomer pillow.


Sign in / Sign up

Export Citation Format

Share Document