structured output learning
Recently Published Documents


TOTAL DOCUMENTS

21
(FIVE YEARS 1)

H-INDEX

6
(FIVE YEARS 0)

Author(s):  
Quan Guo ◽  
Hossein Rajaby Faghihi ◽  
Yue Zhang ◽  
Andrzej Uszok ◽  
Parisa Kordjamshidi

Structured learning algorithms usually involve an inference phase that selects the best global output variables assignments based on the local scores of all possible assignments. We extend deep neural networks with structured learning to combine the power of learning representations and leveraging the use of domain knowledge in the form of output constraints during training. Introducing a non-differentiable inference module to gradient-based training is a critical challenge. Compared to using conventional loss functions that penalize every local error independently, we propose an inference-masked loss that takes into account the effect of inference and does not penalize the local errors that can be corrected by the inference. We empirically show the inference-masked loss combined with the negative log-likelihood loss improves the performance on different tasks, namely entity relation recognition on CoNLL04 and ACE2005 corpora, and spatial role labeling on CLEF 2017 mSpRL dataset. We show the proposed approach helps to achieve better generalizability, particularly in the low-data regime.



2020 ◽  
Vol 34 (04) ◽  
pp. 5005-5012 ◽  
Author(s):  
You Lu ◽  
Bert Huang

Traditional structured prediction models try to learn the conditional likelihood, i.e., p(y|x), to capture the relationship between the structured output y and the input features x. For many models, computing the likelihood is intractable. These models are therefore hard to train, requiring the use of surrogate objectives or variational inference to approximate likelihood. In this paper, we propose conditional Glow (c-Glow), a conditional generative flow for structured output learning. C-Glow benefits from the ability of flow-based models to compute p(y|x exactly and efficiently. Learning with c-Glow does not require a surrogate objective or performing inference during training. Once trained, we can directly and efficiently generate conditional samples. We develop a sample-based prediction method, which can use this advantage to do efficient and effective inference. In our experiments, we test c-Glow on five different tasks. C-Glow outperforms the state-of-the-art baselines in some tasks and predicts comparable outputs in the other tasks. The results show that c-Glow is versatile and is applicable to many different structured prediction problems.





2015 ◽  
Vol 27 (10) ◽  
pp. 2183-2206 ◽  
Author(s):  
P. Balamurugan ◽  
Shirish Shevade ◽  
S. Sundararajan

In structured output learning, obtaining labeled data for real-world applications is usually costly, while unlabeled examples are available in abundance. Semisupervised structured classification deals with a small number of labeled examples and a large number of unlabeled structured data. In this work, we consider semisupervised structural support vector machines with domain constraints. The optimization problem, which in general is not convex, contains the loss terms associated with the labeled and unlabeled examples, along with the domain constraints. We propose a simple optimization approach that alternates between solving a supervised learning problem and a constraint matching problem. Solving the constraint matching problem is difficult for structured prediction, and we propose an efficient and effective label switching method to solve it. The alternating optimization is carried out within a deterministic annealing framework, which helps in effective constraint matching and avoiding poor local minima, which are not very useful. The algorithm is simple and easy to implement. Further, it is suitable for any structured output learning problem where exact inference is available. Experiments on benchmark sequence labeling data sets and a natural language parsing data set show that the proposed approach, though simple, achieves comparable generalization performance.



Author(s):  
Gustavo Carneiro ◽  
Tingying Peng ◽  
Christine Bayer ◽  
Nassir Navab




Sign in / Sign up

Export Citation Format

Share Document