Epoxide-based PDMS TFC membrane fabricated via the T-FLO technique for the phenol separation

2021 ◽  
pp. 119937
Author(s):  
Ping-Ping Li ◽  
Usman Shareef ◽  
Zhen-Liang Xu ◽  
Dovletjan Taymazov ◽  
Yu-Zhe Wu ◽  
...  
Keyword(s):  
2021 ◽  
Vol 617 ◽  
pp. 118581 ◽  
Author(s):  
Yatao Liu ◽  
Langming Bai ◽  
Xuewu Zhu ◽  
Daliang Xu ◽  
Guibai Li ◽  
...  

2016 ◽  
Vol 78 (12) ◽  
Author(s):  
C. Y. Chong ◽  
G. S. Lai ◽  
W. J. Lau ◽  
N. Yusof ◽  
P. S. Goh ◽  
...  

The membrane technology is still considered a costly method to produce potable water. In view of this, RO membrane with enhanced water permeability without trade-off in salt rejection is desirable as it could further reduce the cost for water desalination. In this study, thin film nanocomposite (TFN) membranes containing 0.05 or 0.10 w/v% hydrophilic nanofillers in polyamide layer were synthesized via interfacial polymerization of piperazine and trimesoyl chloride monomers. The resultant TFN membranes were characterized and compared with a control thin film composite (TFC) membrane. Results from the filtration experiments showed that TFN membranes exhibited higher water permeability, salt rejection and fouling resistance compared to that of the TFC membrane. Excessive amount of nanofillers incorporated in the membrane PA layer however negatively affected the cross-linking in the polymer matrix, thus deteriorating the membrane salt rejection. TFN membrane containing 0.05 w/v% of nanofillers showed better performances than the TFC membrane, recording a pure water flux of 11.2 L/m2∙h, and salt rejection of 95.4%, 97.3% and 97.5% against NaCl, Na2SO4 and MgSO4, respectively. 


2016 ◽  
Vol 4 (41) ◽  
pp. 15945-15960 ◽  
Author(s):  
Ying Pan ◽  
Liujia Ma ◽  
Song Lin ◽  
Yufeng Zhang ◽  
Bowen Cheng ◽  
...  

A one-step bimodal grafting method was developed based on a multicomponent reaction to endow a TFC membrane with antifouling and antibacterial properties.


Membranes ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 237
Author(s):  
Nor Akalili Ahmad ◽  
Pei Sean Goh ◽  
Abdul Karim Zulhairun ◽  
Ahmad Fauzi Ismail

With the blooming of oil and gas industries, oily saline wastewater treatment becomes a viable option to resolve the oily water disposal issue and to provide a source of water for beneficial use. Reverse osmosis (RO) has been touted as a promising technology for oily saline wastewater treatment. However, one great challenge of RO membrane is fouling phenomena, which is caused by the presence of hydrocarbon contents in the oily saline wastewater. This study focuses on the fabrication of antifouling RO membrane for accomplishing simultaneous separation of salt and oil. Thin film nanocomposite (TFN) RO membrane was formed by the layer by layer (LbL) assembly of positively charged TNS (pTNS) and negatively charged TNS (nTNS) on the surface of thin film composite (TFC) membrane. The unique features, rendered by hydrophilic TNS bilayer assembled on TFC membrane in the formation of a hydration layer to enhance the fouling resistance by high concentration oily saline water while maintaining the salt rejection, were discussed in this study. The characterization findings revealed that the surface properties of membrane were improved in terms of surface hydrophilicity, surface roughness, and polyamide(PA) cross-linking. The TFC RO membrane coated with 2-bilayer of TNS achieved >99% and >98% for oil and salt rejection, respectively. During the long-term study, the 2TNS-PA TFN membrane outperformed the pristine TFC membrane by exhibiting high permeability and much lower fouling propensity for low to high concentration of oily saline water concentration (1000 ppm, 5000 ppm and 10,000 ppm) over a 960 min operation. Meanwhile, the average permeability of uncoated TFC membrane could only be recovered by 95.7%, 89.1% and 82.9% for 1000 ppm, 5000 ppm and 10,000 ppm of the oily saline feedwater, respectively. The 2TNS-PA TFN membrane achieved almost 100% flux recovery for three cycles by hydraulic washing.


Sign in / Sign up

Export Citation Format

Share Document