crosslinking degree
Recently Published Documents


TOTAL DOCUMENTS

146
(FIVE YEARS 68)

H-INDEX

14
(FIVE YEARS 5)

2021 ◽  
Author(s):  
Loubna Jabir ◽  
Hayat elhammi ◽  
Mohammed Nor ◽  
Issam Jilal ◽  
Abderrahmane El Idrissi ◽  
...  

Abstract In this paper, a new green pH-sensitive cellulose based hydrogel (swelling rate ~ 1005 %) was successfully elaborated. However, the new EDTA crosslinked HEC was investigated as adsorbent materiel, which it showed high removal efficiency (~2000 mg.g-1) to aquatic micropollutants, especially methylene blue as cationic dyes model. The synthesis of HEC-EDTA at high advanced crosslinking degree (up to 92 %) that confirmed using structural analyzes (FTIR and 13C CP/MAS-NMR), was cried out using DAEDT and DMAP as acyl transfer agent, where the lamellar morphology (2D- microstructure) was highly suggested basing on the average functionality of the reaction system. The kinetic study showed that the adsorption process was better described by pseudo-second-order kinetic, where the thermodynamic parameters exhibited a negative effect of temperature indicating a physical adsorption process. In addition, the adsorption capacity was studied according to the experimental conditions (pH, contact time, concentration, etc.), and the Freundlich model revealed a strong correlation to the experimental results indicating an energetic heterogeneity of the surface active sites. In the other hand, molecular dynamics (MD) simulations were conducted and optimized using COMPASS II, where the results showed a good agreement with the experiment, and that basing on the intermolecular Non-covalent interaction, molecular structure and cluster configurations.


Polymers ◽  
2021 ◽  
Vol 13 (23) ◽  
pp. 4128
Author(s):  
Matheus Mendes de Oliveira ◽  
Sven Forsberg ◽  
Linnéa Selegård ◽  
Danilo Justino Carastan

Graphene nanoplatelets (GNP) and carbon nanotubes (CNT) are used to enhance electrical and mechanical properties of epoxy-based nanocomposites. Despite the evidence of synergetic effects in the hybrid GNP-CNT-epoxy system, there is still a lack of studies that focus on the influence of different dispersion methods on the final properties of these ternary systems. In the present work, direct and indirect ultrasonication methods were used to prepare single- and hybrid-filled GNP-CNT-epoxy nanocomposites, varying the amplitude and time of sonication in order to investigate their effect on electrical and thermomechanical properties. Impedance spectroscopy was combined with rheology and electron microscopy to show that high-power direct sonication tends to degrade electrical conductivity in GNP-CNT-epoxy nanocomposites due to damage caused in the nanoparticles. CNT-filled samples were mostly benefitted by low-power direct sonication, achieving an electrical conductivity of 1.3 × 10−3 S·m−1 at 0.25 wt.% loading, while indirect sonication was not able to properly disperse the CNTs and led to a conductivity of 1.6 ± 1.3 × 10−5. Conversely, specimens filled with 2.5 wt. % of GNP and processed by indirect sonication displayed an electrical conductivity that is up to 4 orders of magnitude higher than when processed by direct sonication, achieving 5.6 × 10−7 S·m−1. The introduction of GNP flakes improved the dispersion state and conductivity in hybrid specimens processed by indirect sonication, but at the same time impaired these properties for high-power direct sonication. It is argued that this contradictory effect is caused by a selective localization of shorter CNTs onto GNPs due to strong π-π interactions when direct sonication is used. Dynamic mechanical analysis showed that the addition of nanofillers improved epoxy’s storage modulus by up to 84%, but this property is mostly insensitive to the different processing parameters. Decrease in crosslinking degree and presence of residual solvent confirmed by Fourier-transform infrared spectroscopy, however, diminished the glass transition temperature of the nanocomposites by up to 40% when compared to the neat resin due to plasticization effects.


2021 ◽  
Author(s):  
Xinyu Zeng ◽  
Yu Liu ◽  
Rulei He ◽  
Tongyuan Li ◽  
Yuqin Hu ◽  
...  

Abstract With the development of energy-storage devices, separator is encountered by several challenges including adequate safety, higher current density and superior stability. Tissue paper, composed of packed cellulose fibers, possesses lower production cost, more easily accessibility, superior wettability and outstanding thermostability, thus being prospective as a substrate of high performance separator. To address structure collapse phenomenon occurred in conventional coating layer after long term electrolyte swelling, nano-SiO2 hybrid crosslinked network was constructed on tissue paper through chemical reactions between polymer poly (vinylidene fluoride-co-hexafluoropropylene) (PVDF-HFP) and hyperbranched polyethyleneimine (PEI) in this work. The influences of crosslinking degree on physical properties and electrochemical performance were studied thoroughly. It can be found that when the crosslinking ratio of PVDF-HFP and PEI fixed at 10:1, the crosslinked composite separator displays excellent electrolyte uptake and wettability, superior ionic conductivity, better interfacial compatibility as well as higher Li+ transference number (0.56), thus offering battery with prominent rate capabilities. Besides, this crosslinked composite separator exhibits satisfying dimensional stability even treated at 250 oC, better flame retardancy, enhanced mechanical behavior, wider electrochemical window and outstanding cycle stability. Accordingly, tissue paper-based crosslinked composite separator can meet higher requirements put forward by high power lithium ion battery.


Molecules ◽  
2021 ◽  
Vol 26 (22) ◽  
pp. 6795
Author(s):  
Teruki Nii

Gelatin, a denatured form of collagen, is an attractive biomaterial for biotechnology. In particular, gelatin particles have been noted due to their attractive properties as drug carriers. The drug release from gelatin particles can be easily controlled by the crosslinking degree of gelatin molecule, responding to the purpose of the research. The gelatin particles capable of drug release are effective in wound healing, drug screening models. For example, a sustained release of growth factors for tissue regeneration at the injured sites can heal a wound. In the case of the drug screening model, a tissue-like model composed of cells with high activity by the sustained release of drug or growth factor provides reliable results of drug effects. Gelatin particles are effective in drug delivery and the culture of spheroids or cell sheets because the particles prevent hypoxia-derived cell death. This review introduces recent research on gelatin microparticles-based strategies for regenerative therapy and drug screening models.


Polymers ◽  
2021 ◽  
Vol 13 (20) ◽  
pp. 3460
Author(s):  
Bingbing Leng ◽  
Jiayu Yang ◽  
Chunhui Zhu ◽  
Zhipeng Wang ◽  
Chengying Shi ◽  
...  

A cyclophosphazene derivative containing multiple cyano groups, denoted as hexa(4-cyanophenoxy)cyclotriphosphazene (CN-CP), was synthesized by a one-step nucleophilic substitution reaction for a phosphorus–nitrogen flame retardant. To meet the strict requirement of safe and environment-protective insulation materials, a series of composites based on low-density polyethylene-poly(ethylene-co-vinyl acetate) containing CN-CP/Mg(OH)2/Al(OH)3 organic-inorganic synergistic flame retardants was fabricated. High-energy electron beam irradiation was subsequently applied to obtain a halogen-free flame-retardant crosslinked system. The relationship between crosslinking degree and irradiation dose was studied, and crosslinking degrees ranging within 63–85% were obtained under 100–190 kGy. Furthermore, the effects of CN-CP filler and irradiation dose on the properties of the composites were carefully investigated. The maximum tensile stress and limiting oxygen index values of most composites irradiated by EB were more than 15 MPa and 28%. Results revealed that the obtained materials had excellent thermal and mechanical, flame-retardant, and insulation properties, thereby suggesting their promising prospects for wire and cable applications.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Yuan Li ◽  
Guangya Zhu ◽  
Kai Zhou ◽  
Pengfei Meng ◽  
Guodong Wang

AbstractThis paper evaluates the potential usage of graphene/crosslinked polyethylene (graphene/XLPE) as the insulating material for high voltage direct current (HVDC) cables. Thermal, mechanical and electrical properties of blends with/without graphene were evaluated by differential scanning calorimetry (DSC), tensile strength, DC conductivity, space charge measurements and water tree aging test. The results indicate that 0.007–0.008% weight amount of graphene can improve the mechanical and electrical insulation properties of XLPE blends, namely higher tensile/yield strength, improved space charge distribution, and shorter/fewer water tree branches. The improvements mainly attribute to the high stiffness of graphene, deep traps introduced by the interaction zones of graphene and XLPE, and the blockage effect of graphene within XLPE. For thermal performance of XLPE blends, graphene nano-fillers have but limited improvement. The crystallinity of the blends barely changes with the addition of graphene. However, the crosslinking degree increases as the additive-like amounts of graphene doped. The above findings provide a guide for tailoring lightweight XLPE materials with excellent mechanical and electrical performances by doping them with a small amount of graphene.


Author(s):  
Guodong Huang ◽  
Zhixian Lin ◽  
Haojun Fan ◽  
Jun Xiang ◽  
Chong Zheng ◽  
...  

A type of thermally expandable microspheres (TEMs) for foam coating was prepared by suspension polymerization with acrylonitrile (AN), methyl methacrylate (MMA), vinyl acetate (VAC) as shell polymer monomers and i-pentane as core foaming agent. The effects of an aqueous additive (Sodium Chloride, NaCl) on the size and distribution of TEMs, and the effects of crosslinking degree, i-pentane dosage and monomer mass ratio on the expansion property, expansion temperature and solvent-resistance of TEMs were investigated. The results showed that when the dosage of NaCl was close to the saturation solubility (30%), the dosage of crosslinking agent and alkane were about 0.09% and 7.4%, and the mass ratio of AN/MMA/VAC w rm distribution and good solvent resistance, the expansion diameter ratio was 5 times under 110~120 C, which meets the application requirements for foam coating of leather or synthetic leather.


2021 ◽  
pp. 2100236
Author(s):  
Jun Zhang ◽  
Chengyuan Shang ◽  
Zhuoer Yu ◽  
Linxiao Wang ◽  
Junkun Tang ◽  
...  

Soil Systems ◽  
2021 ◽  
Vol 5 (3) ◽  
pp. 47
Author(s):  
Chiara Turioni ◽  
Giacomo Guerrini ◽  
Andrea Squartini ◽  
Francesco Morari ◽  
Michele Maggini ◽  
...  

The development of functional materials that promote the infiltration and retention of water and the controlled release of fertilizers and nutrients in soil is of interest in agriculture. In this context, hydrogels, three-dimensional polymeric structures able to absorb high amounts of water in their swelling process, play an important role. The swelling ability of hydrogels depends on their crosslinking: the higher the crosslinking degree, the higher the number of interactions in the structure, the lower the swelling response. In this work, we describe biodegradable hydrogels composed of natural feedstocks: cellulose, clay minerals, and humic acids, designed to (i) protect, hydrate, and help germinating seedlings to root even in unfavorable conditions; (ii) sustainably contribute to soil fertility in terms of moisture and nutrients; and (iii) act as a nutritive and protective coating for the seeds. Upon assessing the correlations between curing process and swelling degree (SW), we evaluated the degradation of new biodegradable hydrogels as a function of the synthesis parameters (swelling degree and composition) and environmental conditions (type of soil and water amount for the hydration of the hydrogels). The term curing is hereafter referred to the operation of baking the ingredients at given combinations of time and temperature to obtain a dry hydrogel. The results show that the environmental parameters considered, i.e., amount of hydration water and physical and chemical properties of the soil, play a more decisive role in determining the stability of these hydrogels in soil than their synthesis parameters, such as the composition and the swelling degree.


Polymers ◽  
2021 ◽  
Vol 13 (16) ◽  
pp. 2721
Author(s):  
Amadeja Koler ◽  
Mitja Kolar ◽  
Karel Jeřábek ◽  
Peter Krajnc

With the aim to study the influence of monomer ratio in poly(high internal phase emulsions) (polyHIPEs) on the polymer network architecture and morphology of poly(vinylbenzyl chloride-co-divinylbenzene-co-styrene) after hypercrosslinking via the internal Friedel–Crafts process, polyHIPEs with 80% overall porosity were prepared at three different initial crosslinking degrees, namely 2, 5, and 10 mol.%. All had typical interconnected cellular morphology, which was not affected by the hypercrosslinking process. Nitrogen adsorption and desorption experiments with BET and t-plot modelling were used for the evaluation of the newly introduced nanoporosity and in combination with elemental analysis for the evaluation of the extent of the hypercrosslinking. It was found that, for all three initial crosslinking degrees, the minimum amount of functional monomer, 4-vinylbenzyl chloride, was approximately 30 mol.%. Hypercrosslinking of polymers with lower concentrations of functional monomer did not result in induction of nanoporosity while the initial crosslinking degree had a much lower impact on the formation of nanoporosity.


Sign in / Sign up

Export Citation Format

Share Document