phylogenetic reconciliation
Recently Published Documents


TOTAL DOCUMENTS

9
(FIVE YEARS 6)

H-INDEX

2
(FIVE YEARS 1)

2021 ◽  
Author(s):  
Sumaira Zaman ◽  
Samuel Sledzieski ◽  
Bonnie Berger ◽  
Yi-Chieh Wu ◽  
Mukul S. Bansal

An accurate understanding of the evolutionary history of rapidly-evolving viruses like SARS-CoV-2, responsible for the COVID-19 pandemic, is crucial to tracking and preventing the spread of emerging pathogens. However, viruses undergo frequent recombination, which makes it difficult to trace their evolutionary history using traditional phylogenetic methods. Here, we present a phylogenetic workflow, virDTL, for analyzing viral evolution in the presence of recombination. Our approach leverages reconciliation methods developed for inferring horizontal gene transfer in prokaryotes, and, compared to existing tools, is uniquely able to identify ancestral recombinations while accounting for several sources of inference uncertainty, including in the construction of a strain tree, estimation and rooting of gene family trees, and reconciliation itself. We apply this workflow to the Sarbecovirus subgenus and demonstrate how a principled analysis of predicted recombination gives insight into the evolution of SARS-CoV-2. In addition to providing confirming evidence for the horseshoe bat as its zoonotic origin, we identify several ancestral recombination events that merit further study.


2021 ◽  
Author(s):  
Matthew LeMay ◽  
Yi-Chieh Wu ◽  
Ran Libeskind-Hadas

The maximum parsimony phylogenetic reconciliation problem seeks to explain incongruity between a gene phylogeny and a species phylogeny with respect to a set of evolutionary events. While the reconciliation problem is well-studied for species and gene trees subject to events such as duplication, transfer, loss, and deep coalescence, recent work has examined species phylogenies that incorporate hybridization and are thus represented by networks rather than trees. In this paper, we show that the problem of computing a maximum parsimony reconciliation for a gene tree and species network is NP-hard even when only considering deep coalescence. This result suggests that future work on maximum parsimony reconciliation for species networks should explore approximation algorithms and heuristics.


Author(s):  
Pierre S Garcia ◽  
Wandrille Duchemin ◽  
Jean-Pierre Flandrois ◽  
Simonetta Gribaldo ◽  
Christophe Grangeasse ◽  
...  

Abstract The cell cycle is a fundamental process that has been extensively studied in bacteria. However, many of its components and their interactions with machineries involved in other cellular processes are poorly understood. Furthermore, most knowledge relies on the study of a few models, but the real diversity of the cell division apparatus and its evolution are largely unknown. Here, we present a massive in-silico analysis of cell division and associated processes in around 1,000 genomes of the Firmicutes, a major bacterial phylum encompassing models (i.e. Bacillus subtilis, Streptococcus pneumoniae, and Staphylococcus aureus), as well as many important pathogens. We analyzed over 160 proteins by using an original approach combining phylogenetic reconciliation, phylogenetic profiles, and gene cluster survey. Our results reveal the presence of substantial differences among clades and pinpoints a number of evolutionary hotspots. In particular, the emergence of Bacilli coincides with an expansion of the gene repertoires involved in cell wall synthesis and remodeling. We also highlight major genomic rearrangements at the emergence of Streptococcaceae. We establish a functional network in Firmicutes that allows identifying new functional links inside one same process such as between FtsW (peptidoglycan polymerase) and a previously undescribed PBP or between different processes, such as replication and cell wall synthesis. Finally, we identify new candidates involved in sporulation and cell wall synthesis. Our results provide a previously undescribed view on the diversity of the bacterial cell cycle, testable hypotheses for further experimental studies, and a methodological framework for the analysis of any other biological system.


2020 ◽  
Author(s):  
Misagh Kordi ◽  
Soumya Kundu ◽  
Mukul S. Bansal

AbstractHorizontal gene transfer is one of the most important mechanisms for microbial evolution and adaptation. It is well known that horizontal gene transfer can be either additive or replacing depending on whether the transferred gene adds itself as a new gene in the recipient genome or replaces an existing homologous gene. Yet, all existing phylogenetic techniques for the inference of horizontal gene transfer assume either that all transfers are additive or that all transfers are replacing. This limitation not only affects the applicability and accuracy of these methods but also makes it difficult to distinguish between additive and replacing transfers.Here, we address this important problem by formalizing a phylogenetic reconciliation framework that simultaneously models both additive and replacing transfer events. Specifically, we (1) introduce the DTRL reconciliation framework that explicitly models both additive and replacing transfer events, along with gene duplications and losses, (2) prove that the underlying computational problem is NP-hard, (3) perform the first experimental study to assess the impact of replacing transfer events on the accuracy of the traditional DTL reconciliation model (which assumes that all transfers are additive) and demonstrate that traditional DTL reconciliation remains highly robust to the presence of replacing transfers, (4) propose a simple heuristic algorithm for DTRL reconciliation based on classifying transfer events inferred through DTL reconciliation as being replacing or additive, and (5) evaluate the classification accuracy of the heuristic under a range of evolutionary conditions. Thus, this work lays the methodological and algorithmic foundations for estimating DTRL reconciliations and distinguishing between additive and replacing transfers.An implementation of our heuristic for DTRL reconciliation is freely available open-source as part of the RANGER-DTL software package from https://compbio.engr.uconn.edu/software/ranger-dtl/.


2015 ◽  
Vol 16 (Suppl 14) ◽  
pp. S8 ◽  
Author(s):  
Maureen Stolzer ◽  
Katherine Siewert ◽  
Han Lai ◽  
Minli Xu ◽  
Dannie Durand

Sign in / Sign up

Export Citation Format

Share Document