phylogenetic profiles
Recently Published Documents


TOTAL DOCUMENTS

86
(FIVE YEARS 16)

H-INDEX

20
(FIVE YEARS 2)

2021 ◽  
Vol 22 (1) ◽  
Author(s):  
William F. Anjos ◽  
Gabriel C. Lanes ◽  
Vasco A. Azevedo ◽  
Anderson R. Santos

Abstract BackGround Bacterial genomes are being deposited into online databases at an increasing rate. Genome annotation represents one of the first efforts to understand organisms and their diseases. Some evolutionary relationships capable of being annotated only from genomes are conserved gene neighbourhoods (CNs), phylogenetic profiles (PPs), and gene fusions. At present, there is no standalone software that enables networks of interactions among proteins to be created using these three evolutionary characteristics with efficient and effective results. Results We developed GENPPI software for the ab initio prediction of interaction networks using predicted proteins from a genome. In our case study, we employed 50 genomes of the genus Corynebacterium. Based on the PP relationship, GENPPI differentiated genomes between the ovis and equi biovars of the species Corynebacterium pseudotuberculosis and created groups among the other species analysed. If we inspected only the CN relationship, we could not entirely separate biovars, only species. Our software GENPPI was determined to be efficient because, for example, it creates interaction networks from the central genomes of 50 species/lineages with an average size of 2200 genes in less than 40 min on a conventional computer. Moreover, the interaction networks that our software creates reflect correct evolutionary relationships between species, which we confirmed with average nucleotide identity analyses. Additionally, this software enables the user to define how he or she intends to explore the PP and CN characteristics through various parameters, enabling the creation of customized interaction networks. For instance, users can set parameters regarding the genus, metagenome, or pangenome. In addition to the parameterization of GENPPI, it is also the user’s choice regarding which set of genomes they are going to study. Conclusions GENPPI can help fill the gap concerning the considerable number of novel genomes assembled monthly and our ability to process interaction networks considering the noncore genes for all completed genome versions. With GENPPI, a user dictates how many and how evolutionarily correlated the genomes answer a scientific query.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Doron Stupp ◽  
Elad Sharon ◽  
Idit Bloch ◽  
Marinka Zitnik ◽  
Or Zuk ◽  
...  

AbstractOver the next decade, more than a million eukaryotic species are expected to be fully sequenced. This has the potential to improve our understanding of genotype and phenotype crosstalk, gene function and interactions, and answer evolutionary questions. Here, we develop a machine-learning approach for utilizing phylogenetic profiles across 1154 eukaryotic species. This method integrates co-evolution across eukaryotic clades to predict functional interactions between human genes and the context for these interactions. We benchmark our approach showing a 14% performance increase (auROC) compared to previous methods. Using this approach, we predict functional annotations for less studied genes. We focus on DNA repair and verify that 9 of the top 50 predicted genes have been identified elsewhere, with others previously prioritized by high-throughput screens. Overall, our approach enables better annotation of function and functional interactions and facilitates the understanding of evolutionary processes underlying co-evolution. The manuscript is accompanied by a webserver available at: https://mlpp.cs.huji.ac.il.


Genes ◽  
2021 ◽  
Vol 12 (9) ◽  
pp. 1452
Author(s):  
Audrey Defosset ◽  
Dorine Merlat ◽  
Laetitia Poidevin ◽  
Yannis Nevers ◽  
Arnaud Kress ◽  
...  

Multiciliogenesis is a complex process that allows the generation of hundreds of motile cilia on the surface of specialized cells, to create fluid flow across epithelial surfaces. Dysfunction of human multiciliated cells is associated with diseases of the brain, airway and reproductive tracts. Despite recent efforts to characterize the transcriptional events responsible for the differentiation of multiciliated cells, a lot of actors remain to be identified. In this work, we capitalize on the ever-growing quantity of high-throughput data to search for new candidate genes involved in multiciliation. After performing a large-scale screening using 10 transcriptomics datasets dedicated to multiciliation, we established a specific evolutionary signature involving Otomorpha fish to use as a criterion to select the most likely targets. Combining both approaches highlighted a list of 114 potential multiciliated candidates. We characterized these genes first by generating protein interaction networks, which showed various clusters of ciliated and multiciliated genes, and then by computing phylogenetic profiles. In the end, we selected 11 poorly characterized genes that seem like particularly promising multiciliated candidates. By combining functional and comparative genomics methods, we developed a novel type of approach to study biological processes and identify new promising candidates linked to that process.


2021 ◽  
Author(s):  
Matthew G. Jones ◽  
Yanay Rosen ◽  
Nir Yosef

SUMMARYRecent advances in CRISPR-Cas9 engineering and single-cell assays have enabled the simultaneous measurement of single-cell transcriptomic and phylogenetic profiles. However, there are few computational tools enabling users to integrate and derive insight from a joint analysis of these two modalities. Here, we describe PhyloVision: an open source software for interactively exploring data from both modalities and for identifying and interpreting heritable gene modules whose concerted expression are associated with phylogenetic relationships. PhyloVision provides a feature-rich, interactive, and shareable web-based report for investigating these modules, while also supporting several other data and meta-data exploration capabilities. We demonstrate the utility of PhyloVision using a published dataset of metastatic lung adenocarcinoma cells, whose phylogeny was resolved using a CRISPR/Cas9-based lineage-tracing system. Together, we anticipate that PhyloVision and the methods it implements will be a useful resource for scalable and intuitive data exploration for any assay that simultaneously measures cell state and lineage.


Author(s):  
Pierre S Garcia ◽  
Wandrille Duchemin ◽  
Jean-Pierre Flandrois ◽  
Simonetta Gribaldo ◽  
Christophe Grangeasse ◽  
...  

Abstract The cell cycle is a fundamental process that has been extensively studied in bacteria. However, many of its components and their interactions with machineries involved in other cellular processes are poorly understood. Furthermore, most knowledge relies on the study of a few models, but the real diversity of the cell division apparatus and its evolution are largely unknown. Here, we present a massive in-silico analysis of cell division and associated processes in around 1,000 genomes of the Firmicutes, a major bacterial phylum encompassing models (i.e. Bacillus subtilis, Streptococcus pneumoniae, and Staphylococcus aureus), as well as many important pathogens. We analyzed over 160 proteins by using an original approach combining phylogenetic reconciliation, phylogenetic profiles, and gene cluster survey. Our results reveal the presence of substantial differences among clades and pinpoints a number of evolutionary hotspots. In particular, the emergence of Bacilli coincides with an expansion of the gene repertoires involved in cell wall synthesis and remodeling. We also highlight major genomic rearrangements at the emergence of Streptococcaceae. We establish a functional network in Firmicutes that allows identifying new functional links inside one same process such as between FtsW (peptidoglycan polymerase) and a previously undescribed PBP or between different processes, such as replication and cell wall synthesis. Finally, we identify new candidates involved in sporulation and cell wall synthesis. Our results provide a previously undescribed view on the diversity of the bacterial cell cycle, testable hypotheses for further experimental studies, and a methodological framework for the analysis of any other biological system.


Author(s):  
Eva S Deutekom ◽  
Berend Snel ◽  
Teunis J P van Dam

Abstract Insights into the evolution of ancestral complexes and pathways are generally achieved through careful and time-intensive manual analysis often using phylogenetic profiles of the constituent proteins. This manual analysis limits the possibility of including more protein-complex components, repeating the analyses for updated genome sets or expanding the analyses to larger scales. Automated orthology inference should allow such large-scale analyses, but substantial differences between orthologous groups generated by different approaches are observed. We evaluate orthology methods for their ability to recapitulate a number of observations that have been made with regard to genome evolution in eukaryotes. Specifically, we investigate phylogenetic profile similarity (co-occurrence of complexes), the last eukaryotic common ancestor’s gene content, pervasiveness of gene loss and the overlap with manually determined orthologous groups. Moreover, we compare the inferred orthologies to each other. We find that most orthology methods reconstruct a large last eukaryotic common ancestor, with substantial gene loss, and can predict interacting proteins reasonably well when applying phylogenetic co-occurrence. At the same time, derived orthologous groups show imperfect overlap with manually curated orthologous groups. There is no strong indication of which orthology method performs better than another on individual or all of these aspects. Counterintuitively, despite the orthology methods behaving similarly regarding large-scale evaluation, the obtained orthologous groups differ vastly from one another. Availability and implementation The data and code underlying this article are available in github and/or upon reasonable request to the corresponding author: https://github.com/ESDeutekom/ComparingOrthologies.


2020 ◽  
Author(s):  
Warith Eddine DJEDDI ◽  
Sadok BEN YAHIA ◽  
Engelbert MEPHU NGUIFO

Abstract Background: One of the challenges of the post-genomic era is to provide accurate function annotations for orphan and unannotated protein sequences. With the recent availability of huge PPI networks for many model species, the computational methods revealed a great requirement to elucidate protein function based on many strategies. In this respect, most computational approaches integrate diverse kinds of functional interactions to unveil protein functions by transferring annotations across different species by relying on a similar sequence, structure 2D/3D, amino acid patterns of phylogenetic profiles. Results: In this work, we introduce a new approach, called TANA, for inferring protein functions. The main originality of the introduced approach stands on the function prediction for the unannotated protein by transferring annotation via a network alignment as well as from the direct interaction neighborhood within their PPI networks. In doing so, we are able to discover the functions of proteins that could not be easily described by sequence homology. We assess the performance of our approach using the standard metrics established by the CAFA challenge and highlight a sharp significant improvement over other competitive methods, in particular for predicting molecular functions and cellular components. Conclusions: This research is one of the first attempts that combine sequence and networks-multiple-alignment-based function prediction approaches. We have been able to assess the accuracy of the prediction using pairwise and multiple alignment of the PPI networks for the compared species. Therefore, we recommend using different strategies (i.e. pairwise, multiple, with/without neighborhood networks) especially in situations where the functions of the protein are not known beforehand


2020 ◽  
Author(s):  
Eva S. Deutekom ◽  
Berend Snel ◽  
Teunis J.P. van Dam

AbstractInsights into the evolution of ancestral complexes and pathways are generally achieved through careful and time-intensive manual analysis often using phylogenetic profiles of the constituent proteins. This manual analysis limits the possibility of including more protein-complex components, repeating the analyses for updated genome sets, or expanding the analyses to larger scales. Automated orthology inference should allow such large scale analyses, but substantial differences between orthologous groups generated by different approaches are observed.We evaluate orthology methods for their ability to recapitulate a number of observations that have been made with regards to genome evolution in eukaryotes. Specifically, we investigate phylogenetic profile similarity (co-occurrence of complexes), the Last Eukaryotic Common Ancestor’s gene content, pervasiveness of gene loss, and the overlap with manually determined orthologous groups. Moreover, we compare the inferred orthologies to each other.We find that most orthology methods reconstruct a large Last Eukaryotic Common Ancestor, with substantial gene loss, and can predict interacting proteins reasonably well when applying phylogenetic co-occurrence. At the same time derived orthologous groups show imperfect overlap with manually curated orthologous groups. There is no strong indication of which orthology method performs better than another on individual or all of these aspects. Counterintuitively, despite the orthology methods behaving similarly regarding large scale evaluation, the obtained orthologous groups differ vastly from one another.Availability and implementationThe data and code underlying this article are available in github and/or upon reasonable request to the corresponding author: https://github.com/ESDeutekom/ComparingOrthologies.SummaryWe compared multiple orthology inference methods by looking at how well they perform in recapitulating multiple observations made in eukaryotic genome evolution.Co-occurrence of proteins is predicted fairly well by most methods and all show similar behaviour when looking at loss numbers and dynamics.All the methods show imperfect overlap when compared to manually curated orthologous groups and when compared to orthologous groups of the other methods.Differences are compared between methods by looking at how the inferred orthologies represent a high-quality set of manually curated orthologous groups.We conclude that all methods behave similar when describing general patterns in eukaryotic genome evolution. However, there are large differences within the orthologies themselves, arising from how a method can differentiate between distant homology, recent duplications, or classifying orthologous groups.


2020 ◽  
Author(s):  
Warith Eddine DJEDDI ◽  
Sadok BEN YAHIA ◽  
Engelbert MEPHU NGUIFO

Abstract Background: One of the challenges of the post-genomic era is to provide accurate function annotations for orphan and unannotated protein sequences. With the recent availability of huge PPIs networks for many model species, the computational methods revealed a great requirement to elucidate protein function based on many strategies. In this respect, most computational approaches integrate diverse kinds of functional interactions to unveil protein functions by transferring annotations across different species by relying on similar sequence, structure 2D/3D, amino acid patterns or phylogenetic profiles. Results: In this work, we introduce a new approach, called TANA, for inferring protein functions. The main originality of the introduced approach stands on the function prediction for the unannotated protein by transferring annotation via a network alignment as well as from the direct interaction neighborhood within their PPI networks. Doing so, we are able to discover the functions of proteins that could not to be easily described by sequence homology. We assess the performance of our approach using the standard metrics established by the CAFA challenge and highlight a sharp significant improvement over other competitive methods, in particular for predicting molecular functions. Conclusions: This research is one of the first attempts that combine sequence and networks-multiple-alignment-based function prediction approaches. We have been able to assess the accuracy of the prediction using pairwise and multiple alignment of the PPI networks for the compared species. Therefore, we recommend using different strategies (i.e pairwise, multiple, with/without neighborhood networks) especially in situations where the functions of the protein are not known beforehand.


2020 ◽  
Author(s):  
Warith Eddine DJEDDI ◽  
Sadok BEN YAHIA ◽  
Engelbert MEPHU NGUIFO

Abstract Background: One of the challenges of the post-genomic era is to provide accurate function annotations for orphan and unannotated protein sequences. With the recent availability of huge protein-protein interactions networks for many model species, the computational methods revealed a great requirement to elucidate protein function based on many strategies. In this respect, most computational approaches integrate diverse kinds of functional interactions to unveil protein functions by transferring annotations across different species by relying on similar sequence, structure 2D/3D, amino acid motifs or phylogenetic profiles. Results: In this work, we introduce a new approach called TANA for inferring protein functions. The main originality of the introduced approach stands on the function prediction for the unannotated protein by transferring annotation via a network alignment as well as from the direct interaction neighborhood within their PPI networks. Doing so, we are able to discover the functions of proteins that could not to be easily described by sequence homology. We assess the performance of our method using the standard metrics established by the CAFA and highlight a sharp significant improvement over other competitive methods, in particular for predicting molecular functions. Conclusions: This research is one of the first attempts that combine sequence and networks-multiple-alignment-based function prediction approaches. We have been able to assess the accuracy of the prediction using pairwise and multiple alignment of the PPI networks for the compared species. Therefore, we recommend using different strategies (i.e pairwise, multiple, with/without neighborhood networks) especially in situations where the functions of the protein are not known in advance.


Sign in / Sign up

Export Citation Format

Share Document