scholarly journals Evolution of cooperation in an epithelium

2019 ◽  
Vol 16 (152) ◽  
pp. 20180918 ◽  
Author(s):  
Jessie Renton ◽  
Karen M. Page

Cooperation is prevalent in nature, not only in the context of social interactions within the animal kingdom but also on the cellular level. In cancer, for example, tumour cells can cooperate by producing growth factors. The evolution of cooperation has traditionally been studied for well-mixed populations under the framework of evolutionary game theory, and more recently for structured populations using evolutionary graph theory (EGT). The population structures arising due to cellular arrangement in tissues, however, are dynamic and thus cannot be accurately represented by either of these frameworks. In this work, we compare the conditions for cooperative success in an epithelium modelled using EGT, to those in a mechanical model of an epithelium—the Voronoi tessellation (VT) model. Crucially, in this latter model, cells are able to move, and birth and death are not spatially coupled. We calculate fixation probabilities in the VT model through simulation and an approximate analytic technique and show that this leads to stronger promotion of cooperation in comparison with the EGT model.


Author(s):  
Martin A. Nowak ◽  
Corina E. Tarnita ◽  
Tibor Antal

Evolutionary dynamics shape the living world around us. At the centre of every evolutionary process is a population of reproducing individuals. The structure of that population affects evolutionary dynamics. The individuals can be molecules, cells, viruses, multicellular organisms or humans. Whenever the fitness of individuals depends on the relative abundance of phenotypes in the population, we are in the realm of evolutionary game theory. Evolutionary game theory is a general approach that can describe the competition of species in an ecosystem, the interaction between hosts and parasites, between viruses and cells, and also the spread of ideas and behaviours in the human population. In this perspective, we review the recent advances in evolutionary game dynamics with a particular emphasis on stochastic approaches in finite sized and structured populations. We give simple, fundamental laws that determine how natural selection chooses between competing strategies. We study the well-mixed population, evolutionary graph theory, games in phenotype space and evolutionary set theory. We apply these results to the evolution of cooperation. The mechanism that leads to the evolution of cooperation in these settings could be called ‘spatial selection’: cooperators prevail against defectors by clustering in physical or other spaces.



2015 ◽  
Author(s):  
Jorge Peña ◽  
Bin Wu ◽  
Arne Traulsen

AbstractSpatial structure greatly affects the evolution of cooperation. While in two-player games the condition for cooperation to evolve depends on a single structure coefficient, in multiplayer games the condition might depend on several structure coefficients, making it difficult to compare different population structures. We propose a solution to this issue by introducing two simple ways of ordering population structures: the containment order and the volume order. If population structure 𝒮1 is greater than population structure 𝒮2 in the containment or the volume order, then 𝒮1 can be considered a stronger promoter of cooperation. We provide conditions for establishing the containment order, give general results on the volume order, and illustrate our theory by comparing different models of spatial games and associated update rules. Our results hold for a large class of population structures and can be easily applied to specific cases once the structure coefficients have been calculated or estimated.



2020 ◽  
Author(s):  
Dor Cohen ◽  
Ohad Lewin-Epstein ◽  
Marcus W. Feldman ◽  
Yoav Ram

AbstractCultural evolution of cooperation under vertical and non-vertical cultural transmission is studied, and conditions are found for fixation and coexistence of cooperation and defection. The evolution of cooperation is facilitated by its horizontal transmission and by an association between social interactions and horizontal transmission. The effect of oblique transmission depends on the horizontal transmission bias. Stable polymorphism of cooperation and defection can occur, and when it does, reduced association between social interactions and horizontal transmission evolves, which leads to a decreased frequency of cooperation and lower population mean fitness. The deterministic conditions are compared to outcomes of stochastic simulations of structured populations. Parallels are drawn with Hamilton’s rule incorporating assortment and effective relatedness.



2019 ◽  
Vol 286 (1895) ◽  
pp. 20181949 ◽  
Author(s):  
Xiaojie Chen ◽  
Åke Brännström ◽  
Ulf Dieckmann

Dispersal is a key process for the emergence of social and biological behaviours. Yet, little attention has been paid to dispersal's effects on the evolution of cooperative behaviour in structured populations. To address this issue, we propose two new dispersal modes, parent-preferred and offspring-preferred dispersal, incorporate them into the birth–death update rule, and consider the resultant strategy evolution in the prisoner's dilemma on random-regular, small-world, and scale-free networks, respectively. We find that parent-preferred dispersal favours the evolution of cooperation in these different types of population structures, while offspring-preferred dispersal inhibits the evolution of cooperation in homogeneous populations. On scale-free networks when the strength of parent-preferred dispersal is weak, cooperation can be enhanced at intermediate strengths of offspring-preferred dispersal, and cooperators can coexist with defectors at high strengths of offspring-preferred dispersal. Moreover, our theoretical analysis based on the pair-approximation method corroborates the evolutionary outcomes on random-regular networks. We also incorporate the two new dispersal modes into three other update rules (death-birth, imitation, and pairwise comparison updating), and find that similar results about the effects of parent-preferred and offspring-preferred dispersal can again be observed in the aforementioned different types of population structures. Our work, thus, unveils robust effects of preferential dispersal modes on the evolution of cooperation in different interactive environments.



2016 ◽  
Vol 13 (114) ◽  
pp. 20150881 ◽  
Author(s):  
Jorge Peña ◽  
Bin Wu ◽  
Arne Traulsen

Spatial structure greatly affects the evolution of cooperation. While in two-player games the condition for cooperation to evolve depends on a single structure coefficient, in multiplayer games the condition might depend on several structure coefficients, making it difficult to compare different population structures. We propose a solution to this issue by introducing two simple ways of ordering population structures: the containment order and the volume order. If population structure is greater than population structure in the containment or the volume order, then can be considered a stronger promoter of cooperation. We provide conditions for establishing the containment order, give general results on the volume order, and illustrate our theory by comparing different models of spatial games and associated update rules. Our results hold for a large class of population structures and can be easily applied to specific cases once the structure coefficients have been calculated or estimated.



2022 ◽  
Vol 119 (1) ◽  
pp. e2113468118
Author(s):  
Qi Su ◽  
Benjamin Allen ◽  
Joshua B. Plotkin

How cooperation emerges in human societies is both an evolutionary enigma and a practical problem with tangible implications for societal health. Population structure has long been recognized as a catalyst for cooperation because local interactions facilitate reciprocity. Analysis of population structure typically assumes bidirectional social interactions. But human social interactions are often unidirectional—where one individual has the opportunity to contribute altruistically to another, but not conversely—as the result of organizational hierarchies, social stratification, popularity effects, and endogenous mechanisms of network growth. Here we expand the theory of cooperation in structured populations to account for both uni- and bidirectional social interactions. Even though unidirectional interactions remove the opportunity for reciprocity, we find that cooperation can nonetheless be favored in directed social networks and that cooperation is provably maximized for networks with an intermediate proportion of unidirectional interactions, as observed in many empirical settings. We also identify two simple structural motifs that allow efficient modification of interaction directions to promote cooperation by orders of magnitude. We discuss how our results relate to the concepts of generalized and indirect reciprocity.



2021 ◽  
Vol 288 (1951) ◽  
pp. 20203162
Author(s):  
Dor Cohen ◽  
Ohad Lewin-Epstein ◽  
Marcus W. Feldman ◽  
Yoav Ram

Cultural evolution of cooperation under vertical and non-vertical cultural transmission is studied, and conditions are found for fixation and coexistence of cooperation and defection. The evolution of cooperation is facilitated by its horizontal transmission and by an association between social interactions and horizontal transmission. The effect of oblique transmission depends on the horizontal transmission bias. Stable polymorphism of cooperation and defection can occur, and when it does, reduced association between social interactions and horizontal transmission evolves, which leads to a decreased frequency of cooperation and lower population mean fitness. The deterministic conditions are compared to outcomes of stochastic simulations of structured populations. Parallels are drawn with Hamilton’s rule incorporating relatedness and assortment.





2019 ◽  
Vol 119 ◽  
pp. 230-236 ◽  
Author(s):  
Yu’e Wu ◽  
Zhipeng Zhang ◽  
Shuhua Chang


2006 ◽  
Vol 6 ◽  
pp. 1164-1176 ◽  
Author(s):  
Maude Bernardet ◽  
Wim E. Crusio

Autism is a pervasive developmental disorder appearing before the age of 3, where communication and social interactions are impaired. It also entails stereotypic behavior or restricted interests. Although this disorder was first described in 1943, little is still known about its etiology and that of related developmental disorders. Work with human patients has provided many data on neuropathological and cognitive symptoms, but our understanding of the functional defects at the cellular level and how they come about remains sketchy. To improve this situation, autism research is in need of valid animal models. However, despite a strong hereditary component, attempts to identify genes have generally failed, suggesting that many different genes are involved. As a high proportion of patients suffering from the Fragile X Syndrome show many autistic symptoms, a mouse model of this disorder could potentially also serve as a model for autism. TheFmr1KO mouse is a valid model of the Fragile X Syndrome and many data on behavioral and sensory-motor characteristics of this model have been gathered. We present here an assessment of autistic features in this candidate model. We conclude thatFmr1KO mice display several autistic-like features, but more work is needed to validate this model.



Sign in / Sign up

Export Citation Format

Share Document