mismatch distribution analysis
Recently Published Documents


TOTAL DOCUMENTS

6
(FIVE YEARS 3)

H-INDEX

3
(FIVE YEARS 1)

Diversity ◽  
2022 ◽  
Vol 14 (1) ◽  
pp. 35
Author(s):  
Yufeng Zhang ◽  
Yiming Zhang ◽  
Hui Wu ◽  
Congsheng Li ◽  
Nonillon M. Aspe ◽  
...  

Eisenia nordenskioldi is the dominant earthworm species in many tundra and boreal habitats. Nothing is known about the genetic diversity of this species along the elevation gradient in China. This study sampled 28 individuals in the E. nordenskioldi complex from Wuling Mountain, northern China, to examine their external morphology and genetic diversity. Mt. Wuling is the southern limit of the distribution of the E. nordenskioldi complex. The specimens from Mt. Wuling were classified into three groups along an elevation gradient. Mismatch distribution analysis suggested that the Pleistocene glaciations possibly did not significantly affect the distribution of earthworm species in this region. We also found that elevation affected the genetic diversity, but not the external morphology of E. nordenskioldi. Given the altitudinal genetic diversity within the E. nordenskioldi complex, the phylogeography of this species provides important information for the zoogeographic reconstruction of the mountains in northern China. With the relatively limited sample size, the result is not conclusive, and further studies need to be conducted in the future to verify the results.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Azusa Nakamoto ◽  
Masashi Harada ◽  
Reiko Mitsuhashi ◽  
Kimiyuki Tsuchiya ◽  
Alexey P. Kryukov ◽  
...  

AbstractQuaternary environmental changes fundamentally influenced the genetic diversity of temperate-zone terrestrial animals, including those in the Japanese Archipelago. The genetic diversity of present-day populations is taxon- and region-specific, but its determinants are poorly understood. Here, we analyzed cytochrome b gene (Cytb) sequences (1140 bp) of mitochondrial DNA (mtDNA) to elucidate the factors determining the genetic variation in three species of large moles: Mogera imaizumii and Mogera wogura, which occur in central and southern mainland Japan (Honshu, Shikoku, and Kyushu), and Mogera robusta, which occurs on the nearby Asian continent. Network construction with the Cytb sequences revealed 10 star-shaped clusters with apparent geographic affinity. Mismatch distribution analysis showed that modes of pairwise nucleotide differences (τ values) were grouped into five classes in terms of the level, implying the occurrence of five stages for rapid expansion. It is conceivable that severe cold periods and subsequent warm periods during the late Quaternary were responsible for the population expansion events. The first and third oldest events included island-derived haplotypes, indicative of the involvement of land bridge formation between remote islands, hence suggesting an association of the ends of the penultimate (PGM, ca. 130,000 years ago) and last (LGM, ca. 15,000 years ago) glacial maxima, respectively. Since the third event was followed by the fourth, it is plausible that the termination of the Younger Dryas and subsequent abrupt warming ca. 11,500 years ago facilitated the fourth expansion event. The second event most likely corresponded to early marine isotope stage (MIS) 3 (ca. 53,000 years ago) when the glaciation and subsequent warming period were predicted to have influenced biodiversity. Utilization of the critical times of 130,000, 53,000, 15,000, and 11,500 years ago as calibration points yielded evolutionary rates of 0.03, 0.045, 0.10 and 0.10 substitutions/site/million years, respectively, showing a time-dependent manner whose pattern was similar to that seen in small rodents reported in our previous studies. The age of the fifth expansion event was calculated to be 5800 years ago with a rate of 0.10 substitutions/site/million years ago during the mid-Holocene, suggestive of the influence of humans or other unspecified reasons, such as the Jomon marine transgression.


PeerJ ◽  
2019 ◽  
Vol 7 ◽  
pp. e6264 ◽  
Author(s):  
Yanfen Zhao ◽  
Hongxiang Zhang ◽  
Borong Pan ◽  
Mingli Zhang

Climatic fluctuations during the Quaternary significantly affect many species in their intraspecific divergence and population structure across northwest China. In order to investigate the impact of climate change on herbaceous plants, we studied Panzerina lanata (Lamiaceae), a widely distributed species. Sequences of two chloroplast DNA (cpDNA) intergenic spacers (trnH-psbA and rpoB-trnC) and a nuclear ribosomal region (nrDNA, ITS) were generated from 27 populations of Panzerina lanata and resulted in the identification of seven chloroplast haplotypes and thirty-two nuclear haplotypes. We applied AMOVA, neutrality test and mismatch distribution analysis to estimate genetic differentiation and demographic characteristics. The divergence times of the seven cpDNA haplotypes were estimated using BEAST. Our results revealed high levels of genetic diversity (cpDNA: Hcp = 0.6691, HT = 0.673; nrDNA: Hnr = 0.5668, HT = 0.577). High level of genetic differentiation (GST = 0.950) among populations was observed in the cpDNA sequences, while the genetic differentiation values (GST = 0.348) were low in nuclear sequences. AMOVA results revealed major genetic variation among the three groups: northern, central, and eastern group. However, the genetic differentiation in ITS data was not found. The species distribution modeling and demographic analysis indicated that P. lanata had not experienced recent range expansion. The occurrence of divergence between seven cpDNA haplotypes, probably during Pleistocene, coincides with aridification and expansion of the desert across northwest China that resulted in species diversification and habitat fragmentation. In addition, we discovered that the deserts and the Helan Mountains acted as effective geographic barriers that promoting the intraspecific diversity of P. lanata.


Crustaceana ◽  
2016 ◽  
Vol 89 (13) ◽  
pp. 1559-1573 ◽  
Author(s):  
Jiyoung Woo ◽  
Hyesuck An ◽  
Byung-Jin Lim ◽  
Ha Yeun Song ◽  
Min-Seop Kim ◽  
...  

We investigated the demographic history ofTrinorchestia longiramusJo, 1988 using the nucleotide sequence analysis of the mitochondrial cytochrome oxidase subunit I (COI) gene from 277 individuals collected from eight Korean populations. From the low haplotype diversity and nucleotide diversity in all populations, a neutrality test, and mismatch distribution analysis, the species appears to have recently experienced a prolonged or severe demographic bottleneck. Pairwise populationFSTestimates and AMOVA [= Analysis of Molecular Variance] results showed that substantial differentiation is present between the southern and eastern populations. The population structure ofT. longiramusmay have been influenced by glacial population extinctions and interglacial colonization during the Pleistocene ice-ages.


Sign in / Sign up

Export Citation Format

Share Document