Single identities forcing lattices to be Boolean

2018 ◽  
Vol 68 (4) ◽  
pp. 713-716
Author(s):  
Ivan Chajda ◽  
Helmut Länger ◽  
Ranganathan Padmanabhan

Abstract In this note we characterize Boolean algebras among lattices of type (2, 2, 1) with join, meet and an additional unary operation by means of single two-variable respectively three-variable identities. In particular, any uniquely complemented lattice satisfying any one of these equational constraints is distributive and hence a Boolean algebra.

1970 ◽  
Vol 22 (4) ◽  
pp. 881-891 ◽  
Author(s):  
K. B. Lee

A pseudo-complemented lattice is a lattice L with zero such that for every a ∊ L there exists a* ∊ L such that, for all x ∊ L, a ∧ x = 0 if and only if x ≦ a*. a* is called a pseudo-complement of a. It is clear that for each element a of a pseudo-complemented lattice L, a* is uniquely determined by a. Thus * can be regarded as a unary operation on L. Moreover, each pseudo-complemented lattice contains the unit, namely 0*. It follows that every pseudo-complemented lattice L can be regarded as an algebra (L; (∧, ∨, *, 0, 1)) of type (2, 2, 1, 0, 0). In this paper, we consider only distributive pseudo-complemented lattices. For simplicity, we call such a lattice a p-algebra.


2019 ◽  
Vol 85 (1) ◽  
pp. 109-148
Author(s):  
NICK BEZHANISHVILI ◽  
WESLEY H. HOLLIDAY

AbstractThe standard topological representation of a Boolean algebra via the clopen sets of a Stone space requires a nonconstructive choice principle, equivalent to the Boolean Prime Ideal Theorem. In this article, we describe a choice-free topological representation of Boolean algebras. This representation uses a subclass of the spectral spaces that Stone used in his representation of distributive lattices via compact open sets. It also takes advantage of Tarski’s observation that the regular open sets of any topological space form a Boolean algebra. We prove without choice principles that any Boolean algebra arises from a special spectral space X via the compact regular open sets of X; these sets may also be described as those that are both compact open in X and regular open in the upset topology of the specialization order of X, allowing one to apply to an arbitrary Boolean algebra simple reasoning about regular opens of a separative poset. Our representation is therefore a mix of Stone and Tarski, with the two connected by Vietoris: the relevant spectral spaces also arise as the hyperspace of nonempty closed sets of a Stone space endowed with the upper Vietoris topology. This connection makes clear the relation between our point-set topological approach to choice-free Stone duality, which may be called the hyperspace approach, and a point-free approach to choice-free Stone duality using Stone locales. Unlike Stone’s representation of Boolean algebras via Stone spaces, our choice-free topological representation of Boolean algebras does not show that every Boolean algebra can be represented as a field of sets; but like Stone’s representation, it provides the benefit of a topological perspective on Boolean algebras, only now without choice. In addition to representation, we establish a choice-free dual equivalence between the category of Boolean algebras with Boolean homomorphisms and a subcategory of the category of spectral spaces with spectral maps. We show how this duality can be used to prove some basic facts about Boolean algebras.


1980 ◽  
Vol 45 (2) ◽  
pp. 265-283 ◽  
Author(s):  
Matatyahu Rubin ◽  
Saharon Shelah

AbstractTheorem 1. (◊ℵ1,) If B is an infinite Boolean algebra (BA), then there is B1, such that ∣ Aut (B1) ≤∣B1∣ = ℵ1 and 〈B1, Aut (B1)〉 ≡ 〈B, Aut(B)〉.Theorem 2. (◊ℵ1) There is a countably compact logic stronger than first-order logic even on finite models.This partially answers a question of H. Friedman. These theorems appear in §§1 and 2.Theorem 3. (a) (◊ℵ1) If B is an atomic ℵ-saturated infinite BA, Ψ Є Lω1ω and 〈B, Aut (B)〉 ⊨Ψ then there is B1, Such that ∣Aut(B1)∣ ≤ ∣B1∣ =ℵ1, and 〈B1, Aut(B1)〉⊨Ψ. In particular if B is 1-homogeneous so is B1. (b) (a) holds for B = P(ω) even if we assume only CH.


1962 ◽  
Vol 5 (1) ◽  
pp. 37-41 ◽  
Author(s):  
Günter Bruns

Let B be a Boolean algebra and let ℳ and n be two systems of subsets of B, both containing all finite subsets of B. Let us assume further that the join ∨M of every set M∊ℳ and the meet ∧N of every set N∊n exist. Several authors have treated the question under which conditions there exists an isomorphism φ between B and a field δ of sets, satisfying the conditions:


10.37236/4831 ◽  
2015 ◽  
Vol 22 (2) ◽  
Author(s):  
Ashish Mishra ◽  
Murali K. Srinivasan

Let $G$ be a finite group acting on the finite set $X$ such that the corresponding (complex) permutation representation is multiplicity free. There is a natural rank and order preserving action of the wreath product $G\sim S_n$ on the generalized Boolean algebra $B_X(n)$. We explicitly block diagonalize the commutant of this action.


1971 ◽  
Vol 23 (2) ◽  
pp. 339-344
Author(s):  
Timothy Cramer

A Boolean algebra B is a retract of an algebra A if there exist homomorphisms ƒ: B → A and g: A → B such that gƒ is the identity map B. Some important properties of retracts of Boolean algebras are stated in [3, §§ 30, 31, 32]. If A and B are a-complete, and A is α-generated by B, Dwinger [1, p. 145, Theorem 2.4] proved necessary and sufficient conditions for the existence of an α-homomorphism g: A → B such that g is the identity map on B. Note that if a is not an infinite cardinal, B must be equal to A. The dual problem was treated by Wright [6]; he assumed that A and B are σ-algebras, and that g: A → B is a σ-homomorphism, and gave conditions for the existence of a homomorphism ƒ:B → A such that gƒ is the identity map.


2019 ◽  
Vol 24 (2) ◽  
pp. 723-729
Author(s):  
Ivan Chajda ◽  
Helmut Länger

Abstract In a previous paper, the authors defined two binary term operations in orthomodular lattices such that an orthomodular lattice can be organized by means of them into a left residuated lattice. It is a natural question if these operations serve in this way also for more general lattices than the orthomodular ones. In our present paper, we involve two conditions formulated as simple identities in two variables under which this is really the case. Hence, we obtain a variety of lattices with a unary operation which contains exactly those lattices with a unary operation which can be converted into a left residuated lattice by use of the above mentioned operations. It turns out that every lattice in this variety is in fact a bounded one and the unary operation is a complementation. Finally, we use a similar technique by using simpler terms and identities motivated by Boolean algebras.


1995 ◽  
Vol 47 (1) ◽  
pp. 132-145
Author(s):  
Sabine Koppelberg ◽  
Saharon Shelah

AbstractWe answer three problems by J. D. Monk on cardinal invariants of Boolean algebras. Two of these are whether taking the algebraic density πA resp. the topological density cL4 of a Boolean algebra A commutes with formation of ultraproducts; the third one compares the number of endomorphisms and of ideals of a Boolean algebra.


1988 ◽  
Vol 30 (2) ◽  
pp. 137-143 ◽  
Author(s):  
T. S. Blyth ◽  
J. C. Varlet

Recently we introduced the notion of an MS-algebra as a common abstraction of a de Morgan algebra and a Stone algebra [2]. Precisely, an MS-algebra is an algebra 〈L; ∧, ∨ ∘, 0, 1〉 of type 〈2, 2, 1, 0, 0〉 such that 〈L; ∧, ∨, 0, 1〉 is a distributive lattice with least element 0 and greatest element 1, and x → x∘ is a unary operation such that x ≤ x∘∘, (x ∧ y)∘ = x∘ ∨ y∘ and 1∘ = 0. It follows that ∘ is a dual endomorphism of L and that L∘∘ = {x∘∘ x ∊ L} is a subalgebra of L that is called the skeleton of L and that belongs to M, the class of de Morgan algebras. Clearly, theclass MS of MS-algebras is equational. All the subvarieties of MS were described in [3]. The lattice Λ (MS) of subvarieties of MS has 20 elements (see Fig. 1) and its non-trivial part (we exclude T, the class of one-element algebras) splits into the prime filter generated by M, that is [M, M1], the prime ideal generated by S, that is [B, S], and the interval [K, K2 ∨ K3].


1981 ◽  
Vol 46 (3) ◽  
pp. 572-594 ◽  
Author(s):  
J. B. Remmel

A Boolean algebra is recursive if B is a recursive subset of the natural numbers N and the operations ∧ (meet), ∨ (join), and ¬ (complement) are partial recursive. Given two Boolean algebras and , we write if is isomorphic to and if is recursively isomorphic to , that is, if there is a partial recursive function f: B1 → B2 which is an isomorphism from to . will denote the set of atoms of and () will denote the ideal generated by the atoms of .One of the main questions which motivated this paper is “To what extent does the classical isomorphism type of a recursive Boolean algebra restrict the possible recursion theoretic properties of ?” For example, it is easy to see that must be co-r.e. (i.e., N − is an r.e. set), but can be immune, not immune, cohesive, etc? It follows from a result of Goncharov [4] that there exist classical isomorphism types which contain recursive Boolean algebras but do not contain any recursive Boolean algebras such that is recursive. Thus the classical isomorphism can restrict the possible Turing degrees of , but what is the extent of this restriction? Another main question is “What is the recursion theoretic relationship between and () in a recursive Boolean algebra?” In our attempt to answer these questions, we were led to a wide variety of recursive isomorphism types which are contained in the classical isomorphism type of any recursive Boolean algebra with an infinite set of atoms.


Sign in / Sign up

Export Citation Format

Share Document