plaque purification
Recently Published Documents


TOTAL DOCUMENTS

24
(FIVE YEARS 5)

H-INDEX

9
(FIVE YEARS 0)

npj Vaccines ◽  
2021 ◽  
Vol 6 (1) ◽  
Author(s):  
Florian Bakoa ◽  
Christophe Préhaud ◽  
Guillaume Beauclair ◽  
Maxime Chazal ◽  
Nathalie Mantel ◽  
...  

AbstractMass vaccination with the live attenuated vaccine YF-17D is the current way to prevent infection with Yellow fever virus (YFV). However, 0.000012–0.00002% of vaccinated patients develop post-vaccination neurological syndrome (YEL-AND). Understanding the factors responsible for neuroinvasion, neurotropism, and neurovirulence of the vaccine is critical for improving its biosafety. The YF-FNV vaccine strain, known to be associated with a higher frequency of YEL-AND (0.3–0.4%) than YF-17D, is an excellent model to study vaccine neuroinvasiveness. We determined that neuroinvasiveness of YF-FNV occured both via infection and passage through human brain endothelial cells. Plaque purification and next generation sequencing (NGS) identified several neuroinvasive variants. Their neuroinvasiveness was not higher than that of YF-FNV. However, rebuilding the YF-FNV population diversity from a set of isolated YF-FNV-N variants restored the original neuroinvasive phenotype of YF-FNV. Therefore, we conclude that viral population diversity is a critical factor for YFV vaccine neuroinvasiveness.


2021 ◽  
Author(s):  
Ethan Laudermilch ◽  
Kartik Chandran

AbstractVaccinia virus (VACV)-based vectors are in extensive use as vaccines and cancer immunotherapies. VACV engineering has traditionally relied on homologous recombination between a parental viral genome and a transgene-bearing transfer plasmid, a highly inefficient process that necessitates the use of a selection or screening marker to isolate recombinants. Recent extensions of this approach have sought to enhance the recovery of transgene-bearing viruses through the use of CRISPR-Cas9 engineering to cleave the viral genome in infected cells. However, these methods do not completely eliminate the generation of WT viral progeny and thus continue to require multiple rounds of viral propagation and plaque purification. Here, we describe MAVERICC (marker-free vaccinia virus engineering of recombinants through in vitroCRISPR/Cas9 cleavage), a new strategy to engineer recombinant VACVs in a manner that overcomes current limitations. MAVERICC also leverages the CRISPR/Cas9 system but requires no markers and yields essentially pure preparations of the desired recombinants in a single step. We used this approach to rapidly introduce point mutations, insertions, and deletions at multiple locations in the VACV genome, both singly and in combination. The efficiency and versatility of MAVERICC make it an ideal choice for generating mutants and mutant libraries at arbitrarily selected locations in the viral genome to build complex VACV vectors, effect vector improvements, and facilitate the study of poxvirus biology.Graphical AbstractOverview of MAVERICC. Conceptual overview of the approach outlined in this manuscript. To make VACV recombinants, the parental virus is first purified and vDNA is isolated with phenol:chloroform extraction. This purified vDNA is then treated with Cas9 enzyme and sgRNAs that are directed to a specific locus in the VACV genome. The cleaved vDNA is then transfected into FWPV-infected BSC-40 cells along with a transfer amplicon containing an insertion or mutation of interest flanked by homologous sequences. Recombination is allowed to occur for 5-7 days, during which time the cleaved vDNA is healed by the transfer amplicon, thus editing the VACV genome, and packaged into infectious viral particles. Individual plaques are grown up and rVACVs are isolated after a single round of plaque purification. Image was created with Biorender.com.


AMB Express ◽  
2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Hailong Su ◽  
Yu Zhao ◽  
Lirong Zheng ◽  
Shifeng Wang ◽  
Huoying Shi ◽  
...  

Abstract H9N2 avian influenza virus has spread worldwide, and vaccination with an inactivated virus is currently the major prevention method in China. To further understand the effect of the selection pressure from antibodies on the evolution of H9N2 avian influenza virus, F/98 (A/Chicken/Shanghai/F/98), which is the vaccine representative of H9N2 avian influenza virus in East China, was used for serial passaging for 20 generations in chickens with and without vaccination. After plaque purification from trachea and lung tissues, 390 quasispecies were obtained. The second-generation quasispecies under the selection pressure of vaccine antibodies had undergone 100% antigen variation, while after passaging to the fifth generation, only 30–40% of the quasispecies displayed antigen variation when there was no selection pressure of vaccine antibodies, implying that the selection pressure of vaccine antibodies promotes the antigen variation of F/98. We found for the first time that there were three mutation hotspots in the HA genes of the quasispecies under the selection pressure of vaccine antibodies, which were K131R, A168T, and N201D. Moreover, under the selection pressure of vaccine antibodies, 10 amino acids (67–76) of the NA protein of all quasispecies were deleted, and PB2 of the quasispecies had undergone a high-frequency R355K mutation. However, without selection pressure of vaccine antibodies, NP had undergone two high-frequency mutations, namely, V186I and L466I, and a high-frequency mutation of L77I appeared in the NS gene. This result shows that the vaccine antibody selection pressure could control and regulate gene variation of the F/98 virus. Compared to that of the parental virus F/98, the EID50 of the twentieth passaged virus under the selection pressure of vaccine antibodies did not change, while the EID50 of the twentieth passaged virus without selection pressure of vaccine antibodies was significantly enhanced by 794 times. Furthermore, the twentieth passaged virus with selection pressure from vaccine antibodies lost its lethal ability in embryonated chicken eggs, whereas the EID50 of the twentieth passaged virus without selection pressure of vaccine antibodies increased to 6.3 times that of the F/98 strain. All the above results show that the selection pressure of vaccine antibodies promotes the antigen variation of H9N2 avian influenza virus and plays a role in regulating and controlling gene mutation of H9N2 avian influenza virus.


2020 ◽  
Author(s):  
Hailong SU ◽  
Yu Zhao ◽  
Lirong Zheng ◽  
Shifeng Wang ◽  
Huoying Shi ◽  
...  

Abstract H9N2 avian influenza virus has spread worldwide, and vaccination with an inactivated virus is currently the major prevention method in China. To further understand the effect of the selection pressure from antibodies on the evolution of H9N2 avian influenza virus, F/98 (A/Chicken/Shanghai/F/98), which is the vaccine representative of H9N2 avian influenza virus in East China, was used for serial passaging for 20 generations in chickens with and without vaccination. After plaque purification from trachea and lung tissues, 390 quasispecies were obtained. The second-generation quasispecies under the selection pressure of vaccine antibodies had undergone 100% antigen variation, while after passaging to the fifth generation, only 30-40% of the quasispecies displayed antigen variation when there was no selection pressure of vaccine antibodies, implying that the selection pressure of vaccine antibodies promotes the antigen variation of F/98. We found for the first time that there were three mutation hotspots in the HA genes of the quasispecies under the selection pressure of vaccine antibodies, which were K131R, A168T, and N201D. Moreover, under the selection pressure of vaccine antibodies, 10 amino acids (67-76) of the NA protein of all quasispecies were deleted, and PB2 of the quasispecies had undergone a high-frequency R355K mutation. However, without selection pressure of vaccine antibodies, NP had undergone two high-frequency mutations, namely, V186I and L466I, and a high-frequency mutation of L77I appeared in the NS gene. This result shows that the vaccine antibody selection pressure could control and regulate gene variation of the F/98 virus. Compared to that of the parental virus F/98, the EID 50 of the twentieth passaged virus under the selection pressure of vaccine antibodies did not change, while the EID 50 of the twentieth passaged virus without selection pressure of vaccine antibodies was significantly enhanced by 794 times. Furthermore, the twentieth passaged virus with selection pressure from vaccine antibodies lost its lethal ability in embryonated chicken eggs, whereas the EID 50 of the twentieth passaged virus without selection pressure of vaccine antibodies increased to 6.3 times that of the F/98 strain. All the above results show that the selection pressure of vaccine antibodies promotes the antigen variation of H9N2 avian influenza virus and plays a role in regulating and controlling gene mutation of H9N2 avian influenza virus.


2020 ◽  
Author(s):  
Hailong SU ◽  
Yu Zhao ◽  
Lirong Zheng ◽  
Shifeng Wang ◽  
Huoying Shi ◽  
...  

Abstract H9N2 avian influenza virus has spread worldwide, and vaccination with an inactivated virus is currently the major prevention method in China. To further understand the effect of the selection pressure from antibodies on the evolution of H9N2 avian influenza virus, F/98 (A/Chicken/Shanghai/F/98), which is the vaccine representative of H9N2 avian influenza virus in East China, was used for serial passaging for 20 generations in chickens with and without vaccination. After plaque purification from trachea and lung tissues, 390 quasispecies were obtained. The second-generation quasispecies under the selection pressure of vaccine antibodies had undergone 100% antigen variation, while after passaging to the fifth generation, only 30-40% of the quasispecies displayed antigen variation when there was no selection pressure of vaccine antibodies, implying that the selection pressure of vaccine antibodies promotes the antigen variation of F/98. We found for the first time that there were three mutation hotspots in the HA genes of the quasispecies under the selection pressure of vaccine antibodies, which were K131R, A168T, and N201D. Moreover, under the selection pressure of vaccine antibodies, 10 amino acids (67-76) of the NA protein of all quasispecies were deleted, and PB2 of the quasispecies had undergone a high-frequency R355K mutation. However, without selection pressure of vaccine antibodies, NP had undergone two high-frequency mutations, namely, V186I and L466I, and a high-frequency mutation of L77I appeared in the NS gene. This result shows that the vaccine antibody selection pressure could control and regulate gene variation of the F/98 virus. Compared to that of the parental virus F/98, the EID 50 of the twentieth passaged virus under the selection pressure of vaccine antibodies did not change, while the EID 50 of the twentieth passaged virus without selection pressure of vaccine antibodies was significantly enhanced by 794 times. Furthermore, the twentieth passaged virus with selection pressure from vaccine antibodies lost its lethal ability in embryonated chicken eggs, whereas the EID 50 of the twentieth passaged virus without selection pressure of vaccine antibodies increased to 6.3 times that of the F/98 strain. All the above results show that the selection pressure of vaccine antibodies promotes the antigen variation of H9N2 avian influenza virus and plays a role in regulating and controlling gene mutation of H9N2 avian influenza virus.


2018 ◽  
Vol 65 (3) ◽  
Author(s):  
Yina Sun ◽  
Jie Kong ◽  
Jingyue Ma ◽  
Manli Qi ◽  
Ying Zhang ◽  
...  

Chlamydia has a unique intracellular developmental cycle which has hindered the function study of Chlamydia. Transformation system of Chlamydia developed recently has greatly advanced the chlamydial function research and has been used to find chlamydial plasmid-encoded pgp5 can down-regulate plasmid-dependent genes. It is predicted that pgp5 has similar function with MinD protein encoded by chlamydial genome. However,it is unknown whether MinD has the function of regulating these plasmid-dependent genes. The pgp5 gene in the shuttle vector pGFP::CM was replaced with MinD gene of Chlamydia trachomatis (CT0582) or Chlamydia muridarum(TC0871). The recombinant plasmid was transformed into plasmid-free organisms-CMUT3.Real time PCR was used to detect the genes transcription level in these pgp5 replacement organisms. GlgA, one of the plasmid-regulated gene products was detected by the immunofluorescence assay. After recombination, transformation and plaque purification, the stable transformants CMUT3-pGFP::CM CT0582Rpgp5 and CMUT3-pGFP::CM TC0871Rpgp5 were generated. In these transformants, the plasmid-dependent genes were up-regulated, similar with those in the pgp5 premature stop mutant and pgp5 replacement with mCherry mutant. GlgA protein was also increased in all pgp5 mutants including CT0582Rpgp5 and TC0871Rpgp5. Thus, the transformation system has allowed us to identify the function of MinD that is useful for further understanding the chlamydiae. 


Author(s):  
M. Srikanth Reddy ◽  
Kalyani Putty ◽  
Y. Narasimha Reddy ◽  
P.P. Rao ◽  
M. Ramakoti Reddy ◽  
...  

protocols.io ◽  
2015 ◽  
Author(s):  
Mathias Middelboe ◽  
Amy M ◽  
and Sif
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document