sensory ecology
Recently Published Documents


TOTAL DOCUMENTS

152
(FIVE YEARS 39)

H-INDEX

26
(FIVE YEARS 4)

Botany ◽  
2021 ◽  
Author(s):  
Glenn H. Shepard ◽  
Lewis Daly

Seeking to generate a deeper methodological and theoretical dialogue between botanical science and anthropology, this paper summarizes interdisciplinary approaches to human-plant interactions we have described as “sensory ecology” and “phytoethnography,” applying these concepts to vital questions about human-plant relations in Amazonia. Building on this work, we broaden the scope of our investigations by considering their relevance to the field of historical ecology. In particular, we discuss Eduardo Viveiros de Castro’s concept of “multinaturalism” and explore how it can be applied to understanding indigenous management and domestication of forest landscapes in Amazonia.


2021 ◽  
Vol 75 (11) ◽  
Author(s):  
Christina Elgert ◽  
Topi K. Lehtonen ◽  
Arja Kaitala ◽  
Ulrika Candolin

Abstract Artificial light at night is increasing globally, interfering with both sensory ecology and temporal rhythms of organisms, from zooplankton to mammals. This interference can change the behaviour of the affected organisms, and hence compromise the viability of their populations. Limiting the use of artificial light may mitigate these negative effects. Accordingly, we investigated whether the duration of artificial light affects sexual signalling in female glow-worms, Lampyris noctiluca, which are flightless and attract flying males to mate by emitting glow that is interfered by light pollution. The study included three treatments: no artificial light (control), 15 min of artificial light, and 45 min of artificial light. The results show that females were more likely to cease glowing when the exposure to light was longer. Furthermore, small females were more likely to cease their glow, and responded faster to the light, than larger females. These findings suggest that glow-worms can react rapidly to anthropogenic changes in nocturnal light levels, and that prolonged periods of artificial light trigger females to stop sexual signalling. Thus, limiting the duration of artificial light can mitigate the adverse effects of light pollution on sexual signalling, highlighting the importance of such mitigation measures. Significance statement Interest in the effects of artificial light at night on animal behaviour has increased in recent years. With evidence for its negative impact accumulating, potential remedies, such as limiting the duration of light exposure, have emerged. To date, however, knowledge on the effectiveness of these methods has remained very limited. We show that female European common glow-worms, which are wingless beetles that glow to attract flying males to mate, responded to prolonged artificial light exposure by discontinuing their glow. Such non-glowing females are not expected to find a mate, making it difficult for them to reproduce. Hence, our study indicates that the duration of artificial light should be limited to protect this night-active beetle and its opportunities for effective sexual signalling. Because many other nocturnal species also need darkness, this study provides valuable information for the development and use of less disruptive night-time lights.


2021 ◽  
pp. 475-492
Author(s):  
William M. Hamner
Keyword(s):  

2021 ◽  
Author(s):  
Petra H. Lenz ◽  
Daniel K. Hartline ◽  
Jennifer E. Purcell ◽  
David L. Macmillan
Keyword(s):  

Author(s):  
Rachel A. Page ◽  
Hannah M. ter Hofstede

We see stunning morphological diversity across the animal world. Less conspicuous but equally fascinating are the sensory and cognitive adaptations that determine animals’ interactions with their environments and each other. We discuss the development of the fields of sensory and cognitive ecology and the importance of integrating these fields to understand the evolution of adaptive behaviors. Bats, with their extraordinarily high ecological diversity, are ideal animals for this purpose. An explosion in recent research allows for better understanding of the molecular, genetic, neural, and behavioral bases for sensory ecology and cognition in bats. We give examples of studies that illuminate connections between sensory and cognitive features of information filtering, evolutionary trade-offs in sensory and cognitive processing, and multimodal sensing and integration. By investigating the selective pressures underlying information acquisition, processing, and use in bats, we aim to illuminate patterns and processes driving sensory and cognitive evolution. Expected final online publication date for the Annual Review of Ecology, Evolution, and Systematics, Volume 52 is November 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.


Author(s):  
Marion Segall ◽  
Raphaël Cornette ◽  
Arne R. Rasmussen ◽  
Christopher J. Raxworthy
Keyword(s):  

2021 ◽  
Vol 288 (1953) ◽  
pp. 20210774
Author(s):  
Beth Mortimer ◽  
James A. Walker ◽  
David S. Lolchuragi ◽  
Michael Reinwald ◽  
David Daballen

African elephants ( Loxodonta africana ) use many sensory modes to gather information about their environment, including the detection of seismic, or ground-based, vibrations. Seismic information is known to include elephant-generated signals, but also potentially encompasses biotic cues that are commonly referred to as ‘noise’. To investigate seismic information transfer in elephants beyond communication, here we tested the hypothesis that wild elephants detect and discriminate between seismic vibrations that differ in their noise types, whether elephant- or human-generated. We played three types of seismic vibrations to elephants: seismic recordings of elephants (elephant-generated), white noise (human-generated) and a combined track (elephant- and human-generated). We found evidence of both detection of seismic noise and discrimination between the two treatments containing human-generated noise. In particular, we found evidence of retreat behaviour, where seismic tracks with human-generated noise caused elephants to move further away from the trial location. We conclude that seismic noise are cues that contain biologically relevant information for elephants that they can associate with risk. This expands our understanding of how elephants use seismic information, with implications for elephant sensory ecology and conservation management.


Author(s):  
Pedro Alejandro Triana-Garcia ◽  
Gabrielle A. Nevitt ◽  
Joseph B. Pesavento ◽  
Swee J. Teh

AbstractThe Delta Smelt (Hypomesus transpacificus) is a small, semi-anadromous fish native to the San Francisco Bay-Delta Estuary and has been declared as critically endangered. Their olfactory biology, in particular, is poorly understood and a basic description of their sensory anatomy is needed to advance our understanding of the sensory ecology of species to inform conservation efforts to manage and protect them. We provide a description of the gross morphology, histological, immunohistochemical, and ultrastructural features of the olfactory rosette in this fish and discuss some of the functional implications in relation to olfactory ability. We show that Delta Smelt have a multilamellar olfactory rosette with allometric growth. Calretinin immunohistochemistry revealed a diffuse distribution of olfactory receptor neurons within the epithelium. Ciliated, microvillous and crypt neurons were clearly identified using morphological and immunohistochemical features. The olfactory neurons were supported by robust ciliated and secretory sustentacular cells. Although the sense of smell has been overlooked in Delta Smelt, we conclude that the olfactory epithelium has many characteristics of macrosmatic fish. With this study, we provide a foundation for future research into the sensory ecology of this imperiled fish.


Sign in / Sign up

Export Citation Format

Share Document