deep seismic soundings
Recently Published Documents


TOTAL DOCUMENTS

34
(FIVE YEARS 0)

H-INDEX

14
(FIVE YEARS 0)

2017 ◽  
Vol 43 (1) ◽  
pp. 32 ◽  
Author(s):  
J. Makris

By constraining gravity modelling by Deep Seismic Soundings (DSS) and the Bouguer gravity field of Greece a 3-D density-velocity model of the crust and upper mantle was developed. It was shown that in the north Aegean Trough and the Thermaikos Basins the sediments exceed 7 km in thickness. The basins along the western Hellenides and the coastal regions of western Greece are filled with sediments of up to 10 km thickness, including the Prepulia and Alpine metamorphic limestones. The thickest sedimentary series however, were mapped offshore southwest and southeast of Crete and are of the order of 12 to 14 km. The crust along western Greece and the Peloponnese ranges between 42 and 32 km thickness while the Aegean region is floored by a stretched continental crust varying between 24 to 26 km in the north and eastern parts and thins to only 16 km at the central Cretan Sea. The upper mantle below the Aegean Sea is occupied by a lithothermal system of low density (3.25 gr/cm³) and Vp velocity (7.7 km/s), which is associated with the subducted Ionian lithosphere below the Aegean Sea. Isostasy is generally maintained at crustal and subcrustal levels except for the compressional domain of western Greece and the transition between the Mediterranean Ridge and the continental backstop. The isotherms computed from the Heat Flow density data and the density model showed a significant uplift of the temperature field below the Aegean domain. The 400°C isotherm is encountered at less than 10 Km depth. Tectonic deformation is controlled by dextral wrench faulting in the Aegean domain, while western Greece is dominated by compression and crustal shortening. Strike-slip and normal faults accommodate the western Hellenic thrusts and the westwards sliding of the Alpine napes, using the Triassic evaporates as lubricants.


2016 ◽  
Vol 52 (4) ◽  
pp. 572-589 ◽  
Author(s):  
T. S. Sakoulina ◽  
S. N. Kashubin ◽  
G. A. Pavlenkova

2016 ◽  
Vol 37 (2) ◽  
pp. 243-268 ◽  
Author(s):  
Jan Okoń ◽  
Jerzy Giżejewski ◽  
Tomasz Janik

Abstract The Polish Geophysical Expedition to West Antarctica in 1979–1980 was carried out by the Institute of Geophysics, Polish Academy of Sciences. Beside deep seismic soundings, 12 multi-channel seismic profiles, with a total length of ca 1000 km have been recorded north and east of the South Shetland Islands and in the Bransfield Strait, but they have never before been completely interpreted and published. All profiles have been processed with modern processing flow including time migration. Profiles crossing the South Shetland Trench revealed distinct reflector inside continental slope, which has been interpreted as border between buried accretionary prism and overlying slope sediments of glacial-marine origin. Profiles in the Bransfield Strait show traces of the Last Glacial Maximum (LGM) in the form of glacial foreground valleys, with some of them used as weak spots for young age volcanic intrusions. This paper is the first comprehensive geological interpretation of collected dataset and differences between results from other expeditions are discussed.


2015 ◽  
Vol 45 (2) ◽  
pp. 135-148
Author(s):  
Barbora Šimonová ◽  
Miroslav Bielik ◽  
Jana Dérerová

Abstract This paper presents a 2D density model along a transect from NW to SE China. The model was first constructed by the transformation of seismic velocity to density, revealed by previous deep seismic soundings (DSS) investigations in China. Then, the 2D density model was updated using the GM-SYS software by fitting the computed to the observed gravity data. Based on the density distribution of anomalous layers we divided the Chinese continental crust along the transect into three regions: north-western, central and south-eastern. The first one includes the Junggar Basin, Tianshan and Tarim Basin. The second part consists of the Qilian Orogen, the Qaidam Basin and the Songpan Ganzi Basin. The third region is represented by the Yangtze and the Cathaysia blocks. The low velocity body (vp =5.2 – 6.2 km/s) at the junction of the North-western and Central parts at a depth between 21 – 31 km, which was discovered out by DSS, was also confirmed by our 2D density modelling.


2011 ◽  
Vol 40 (4) ◽  
pp. 977-989 ◽  
Author(s):  
Zhongjie Zhang ◽  
Yangfan Deng ◽  
Jiwen Teng ◽  
Chunyong Wang ◽  
Rui Gao ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document